zoukankan      html  css  js  c++  java
  • 不定积分 习题


    把之前做的还有没做的重新做一遍吧,复习、整理一下。
    用Markdown写略gouzhi啊。。不过写博客上也许方便?
    保持每晚一两道吧。

    咕咕咕。
    弃疗了。。现在用不到写来就忘。。而且写起来太难写了,以后有空再说。

    第一类换元法

    [egin{aligned}F[g(x)]&=int F'[g(x)]g'(x)dx\&=int F'[g(x)]d[g(x)]\&=F[g(x)]end{aligned} ]

      反正就是凑。

    例1.$$intfrac{cos^2x-sin x}{cos x(1+cos x e^{sin x})}$$

    应该是把(cos x e^{sin x})弄出来,而((cos x e^{sin x})'=e^{sin x}(cos^2x-sin x)),所以答案就出来了。

    [egin{aligned} intfrac{cos^2x-sin x}{cos x(1+cos x e^{sin x})}&=intfrac{e^{sin x}(cos^2x-sin x)}{e^{sin x}cos x(1+cos x e^{sin x})}dx\&=intfrac{d(cos x e^{sin x})}{cos x e^{sin x}(1+cos x e^{sin x})}end{aligned} ]

    (t=cos x e^{sin x})

    [egin{aligned} 原式&=intfrac{dt}{t(t+1)}\&=intfrac{dt}{t}-intfrac{d(t+1)}{t+1}\&=ln|t|-ln|t+1|+C\&=ln|cos x e^{sin x}|-ln|cos x e^{sin x}+1|+C end{aligned} ]

    1.$$intfrac{dx}{e^x-e^{-x}}$$

    [egin{aligned} intfrac{dx}{e^x-e^{-x}}&=intfrac{e^xdx}{(e^x)^2-1}\&=frac{1}{2}intfrac{de^x}{e^x-1}-frac{1}{2}intfrac{de^x}{e^x+1}\&=frac{1}{2}ln|e^x-1|-frac{1}{2}ln|e^x+1|+C end{aligned} ]

    第二类换元法

    1.三角代换

    [sqrt{a^2-x^2} ightarrow 令x=asin t,-frac{pi}{2}<t<frac{pi}{2} ]

    [sqrt{x^2-a^2} ightarrow 令x=asec t,0<t<frac{pi}{2} ]

    [sqrt{a^2+x^2} ightarrow 令x=a an t,-frac{pi}{2}<t<frac{pi}{2} ]

    2.根式代换

    [令sqrt{ax+b}=t,x=frac{t^2-b}{a},dx=d(frac{t^2-b}{a})=...dt ]

    3.倒代换

    [分母的幂高于分子的幂(>2)时,令t=frac{1}{x} ]

    例1.$$intfrac{1}{1+sqrt[3]{x+2}}dx$$

    (t=sqrt[3]{x+2},x=t^3-2,dx=3t^2dt)

    [egin{aligned} intfrac{1}{1+sqrt[3]{x+2}}dx&=intfrac{3t^2}{1+t}dt\&=3intfrac{t^2-1+1}{1+t}dt\&=3int[t-1+frac{1}{t+1}]dt\&=3left[frac{1}{2}(t-1)^2+ln|t+1| ight]+C\&=...x... end{aligned} ]

  • 相关阅读:
    1组Alpha冲刺总结
    1组Beta冲刺4/5
    1组Beta冲刺5/5
    1组Alpha冲刺4/6
    1组Alpha冲刺总结
    1组Beta冲刺2/5
    1组Beta冲刺3/5
    1组Beta冲刺2/5
    1组Alpha冲刺4/6
    1组Alpha冲刺5/6
  • 原文地址:https://www.cnblogs.com/SovietPower/p/9226870.html
Copyright © 2011-2022 走看看