将原坐标系每个点的坐标((x,y))变为((x+y,x-y)),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离。
反过来,将原坐标系每个点的坐标((x,y))变为((frac{x+y}{2},frac{x-y}{2})),则原坐标系中的切比雪夫距离等于新坐标系中的曼哈顿距离。
随便写两个点就可以验证这是对的。
将题目中每个点的坐标((x,y))改为((frac{x+y}{2},frac{x-y}{2})),然后记(dis(a,b)=Delta X+Delta Y)表示两个点(a,b)间的曼哈顿距离。
枚举每一个点(x),则到(x)的距离之和为(Sum=sum_{i=1}^ndis(i,x))。
把(dis(i,x))拆开,即$$egin{aligned}Sum&=sum_{i=1}^nDelta X(i,x)+Delta Y(i,x)&=Delta X(1,x)+Delta X(2,x)+...+Delta Y(1,x)+Delta Y(2,x)...end{aligned}$$
把每个点按(x)或(y)排序,枚举点时就可以(O(1))计算(Delta X)或(Delta Y)的变化量了。
当然没必要先把坐标(x,y)除以(2)。最后把答案除以(2)即可。
我否认在刷水题的事实。
//3072kb 264ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
LL Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Point
{
int x,y,id;
Point(int tid=0,int ty=0,int tx=0) {id=tid, x=tx+ty, y=tx-ty;}
}p[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
bool cmpx(Point a,Point b)
{
return a.x<b.x;
}
bool cmpy(Point a,Point b)
{
return a.y<b.y;
}
int main()
{
int n=read();
for(int i=1; i<=n; ++i) p[i]=Point(i,read(),read());
std::sort(p+1,p+1+n,cmpx);
LL sum=-1ll*(n-1)*p[1].x;
for(int i=2; i<=n; ++i) sum+=p[i].x;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].x-p[i].x);//i*dx-(n-i)*dx
std::sort(p+1,p+1+n,cmpy);
sum=-1ll*(n-1)*p[1].y;
for(int i=2; i<=n; ++i) sum+=p[i].y;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].y-p[i].y);
LL ans=1e18;
for(int i=1; i<=n; ++i) ans=std::min(ans,Ans[i]);
printf("%lld
",ans>>1);
return 0;
}