题目
在一个(n)个节点(n)条边的连通图中,
每条边的权值为两个端点的权值的和。
已知各边权值,求各点权值
(保证环的大小一定是奇数)
分析
考虑断掉环的某一条边,设根节点的答案为(ax+b,a=1,b=0),
推出其它点的表示,再根据断掉的边的答案求出(x),代入所有点的权值得出答案
代码
#include <cstdio>
#include <cctype>
#include <cstdlib>
#define rr register
using namespace std;
const int N=100011;
struct node{int y,w,next;}e[N<<1];
struct rec{int x,y;}dp[N];
int v[N],as[N],n,k=1,ANS,H;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void dfs1(int x,int fa){
v[x]=1;
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
if (v[e[i].y]) H=i;
else dfs1(e[i].y,x);
}
}
inline void dfs2(int x,int fa){
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fa&&i!=H&&i!=(H^1)){
dp[e[i].y]=(rec){-dp[x].x,e[i].w-dp[x].y};
dfs2(e[i].y,x);
}
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
signed main(){
n=iut(),dp[1]=(rec){1,0};
for (rr int i=1;i<=n;++i){
rr int x=iut(),y=iut(),z=iut();
e[++k]=(node){y,z,as[x]},as[x]=k;
e[++k]=(node){x,z,as[y]},as[y]=k;
}
dfs1(1,0),dfs2(1,0); rr int X=e[H].y,Y=e[H^1].y,W=e[H].w;
rr rec T=(rec){dp[X].x+dp[Y].x,dp[X].y+dp[Y].y}; ANS=(W-T.y)/T.x;
for (rr int i=1;i<=n;++i){
rr int ans=ANS*dp[i].x+dp[i].y;
if (ans<0) putchar('-'),ans=-ans;
print(ans),putchar(10);
}
return 0;
}