zoukankan      html  css  js  c++  java
  • 光速幂和矩阵光速幂

    我真是醉了,快速幂和矩阵快速幂T飞了,竟然还有光速幂和矩阵光速幂。

    下面给个光速幂和矩阵光速幂板子,原创的。

    普通光速幂:

     1 #include<bits/stdc++.h>
     2 #define ll long long 
     3 #define scan(i) scanf("%d",&i)
     4 #define scand(i) scanf("%lf",&i)
     5 #define scanl(i) scanf("%lld",&i)
     6 #define f(i,a,b) for(int i=a;i<=b;i++) 
     7 #define pb(i) push_back(i)
     8 #define ppb pop_back()
     9 #define pf printf
    10 #define dbg(args...) cout<<#args<<" : "<<args<<endl;
    11 #define RG register
    12 using namespace std;
    13 int t,n; 
    14 const ll mod=1e9+7;
    15 const ll x1=94153035;
    16 const ll x2=905847205;
    17 const ll x3=64353223;//x3=x1^65536%mod
    18 const ll x4=847809841;//x4=x2^65536%mod
    19 const int maxn=65536;//maxn>sqrt(mod)
    20 int f_1[maxn+5], f_2[maxn+5], f_3[maxn+5], f_4[maxn+5];
    21 //f_3[i]保存x1^(i<<16),f_1[i]保存x1^i
    22 //f_4[i]保存x2^(i<<16),f_2[i]保存x2^i
    23 inline int Pow_1(int x) { return 1ll * f_3[x >> 16] * f_1[x & 65535] % mod; }
    24 //Pow_1返回x1^x%mod 
    25 inline int Pow_2(int x) { return 1ll * f_4[x >> 16] * f_2[x & 65535] % mod; }
    26 //Pow_2返回x2^x%mod 
    27 int main(){
    28     f_1[0] = f_2[0] = f_3[0] = f_4[0] = 1;
    29     for(RG int i = 1; i < maxn; i++) f_1[i] = 1ll * f_1[i - 1] * x1 % mod;
    30     for(RG int i = 1; i < maxn; i++) f_2[i] = 1ll * f_2[i - 1] * x2 % mod;
    31     for(RG int i = 1; i < maxn; i++) f_3[i] = 1ll * f_3[i - 1] * x3 % mod;
    32     for(RG int i = 1; i < maxn; i++) f_4[i] = 1ll * f_4[i - 1] * x4 % mod;
    33     return 0;
    34 } 

    矩阵光速幂:

     1 #include<bits/stdc++.h>
     2 #define ll long long 
     3 #define scan(i) scanf("%d",&i)
     4 #define scand(i) scanf("%lf",&i)
     5 #define scanl(i) scanf("%lld",&i)
     6 #define f(i,a,b) for(int i=a;i<=b;i++) 
     7 #define pb(i) push_back(i)
     8 #define ppb pop_back()
     9 #define pf printf
    10 #define dbg(args...) cout<<#args<<" : "<<args<<endl;
    11 #define RG register
    12 using namespace std;
    13 int t,n;
    14 const int maxn=65536; 
    15 const int N=2;
    16 const ll mod=998244353;
    17 ll f_1[maxn+5][N][N], f_2[maxn+5][N][N];
    18 //f_1[i]存储base1^i,f_2[i]存储base1^[i<<16]; 
    19 ll base1[N][N]={
    20     1,1,
    21     1,1
    22 };
    23 ll base2[N][N]={//base2=base1^65536%mod
    24     1,1,
    25     1,1
    26 };
    27 ll tmp[N][N]; 
    28 ll qpow(ll x,ll i){//ans=x^i
    29     ll ans = 1;
    30     while(i)
    31     {
    32         if(i&1) ans = (ans*x)%mod;
    33         i >>= 1;
    34         x = (x*x)%mod;
    35     }
    36     return ans;
    37 }
    38 void multi(ll c[][N],ll a[][N],ll b[][N]){//c=axb 
    39     //memset(c,0,sizeof c);
    40     for(ll i=0;i<n;i++){
    41         for(ll j=0;j<n;j++){
    42             for(ll k=0;k<n;k++)  
    43                 c[i][j]+=a[i][k]*b[k][j];
    44                c[i][j]%=mod;
    45         }
    46     }
    47 }
    48 ll res[N][N];  
    49 void print(){
    50     for(int i=0;i<N;i++){
    51         for(int j=0;j<N;j++){
    52             cout<<res[i][j]<<" ";
    53         }
    54         cout<<endl;
    55     }
    56 }
    57 int main(){
    58     for(int i=0;i<N;i++) f_1[0][i][i]=f_2[0][i][i]=1; 
    59     for(RG int i = 1; i < maxn; i++) multi(f_1[i],f_1[i-1],base1);
    60     for(RG int i = 1; i < maxn; i++) multi(f_2[i],f_2[i-1],base2);
    61 }

    既然名字叫光速幂,肯定是很快的。

    快速幂复杂度O(Tlogn),T是查询次数,n是幂次数;

    光速幂复杂度O(T+sqrt(m)),T是查询次数,m是取得mod;

    一般来说,sqrt(mod)最多在1e5,所以应该快上不少。

    以上。

  • 相关阅读:
    UEFI Protocol
    MFC使用自定义资源加载PNG
    C/C++中的static关键字详解
    spring boot 日志配置 默认的日志配置
    Profile 多环境支持
    YAML语法
    nginx 启动出现 [error] open() "/usr/local/nginx/logs/nginx.pid" failed (2: No such file or directory)
    Nginx日志切割
    Linux 系统安装Nginx
    spring boot Lombok使用方法
  • 原文地址:https://www.cnblogs.com/St-Lovaer/p/11504899.html
Copyright © 2011-2022 走看看