zoukankan      html  css  js  c++  java
  • 线性模型L2正则化——岭回归

    1 from sklearn.model_selection import train_test_split
    2 from sklearn.linear_model import LinearRegression
    3 from sklearn.datasets import load_diabetes
    4 X,y=load_diabetes().data,load_diabetes().target
    5 X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=8)
    6 lr=LinearRegression().fit(X_train,y_train)
    7 print("the coefficient:{}".format(lr.coef_))
    8 print('the intercept:{}'.format(lr.intercept_))
    9 print("the score of this model:{:.3f}".format(lr.score(X_test,y_test)))
     1 from sklearn.linear_model import Ridge
     2 ridge=Ridge().fit(X_train,y_train)
     3 print("the coefficient:{}".format(ridge.coef_))
     4 print('the intercept:{}'.format(ridge.intercept_))
     5 print("the score of this model:{:.3f}
    ".format(ridge.score(X_test,y_test)))
     6 
     7 ridge10=Ridge(alpha=10).fit(X_train,y_train)
     8 print("the coefficient:{}".format(ridge10.coef_))
     9 print('the intercept:{}'.format(ridge10.intercept_))
    10 print("the score of this model:{:.3f}
    ".format(ridge10.score(X_test,y_test)))
    11 
    12 ridge01=Ridge(alpha=0.1).fit(X_train,y_train)
    13 print("the coefficient:{}".format(ridge01.coef_))
    14 print('the intercept:{}'.format(ridge01.intercept_))
    15 print("the score of this model:{:.3f}
    ".format(ridge01.score(X_test,y_test)))
     1 import matplotlib.pyplot as plt
     2 plt.plot(ridge.coef_,'s',label='Ridge alpha=1')
     3 plt.plot(ridge10.coef_,'^',label='Ridge alpha=10')
     4 plt.plot(ridge01.coef_,'v',label='Ridge alpha=0.1')
     5 plt.plot(lr.coef_,'o',label='Linear Regression')
     6 plt.xlabel("coeffient index")
     7 plt.ylabel("coeffient magnitude")
     8 plt.hlines(0,0,len(lr.coef_))
     9 plt.legend()
    10 plt.show()
     1 import numpy as np
     2 from sklearn.model_selection import learning_curve,KFold
     3 def plot_learning_curve(est,X,y):
     4     training_set_size,train_scores,test_scores=learning_curve(
     5         est,X,y,train_sizes=np.linspace(.1,1,20),cv=KFold(20,shuffle=True,random_state=1)
     6     )
     7     estimator_name=est.__class__.__name__
     8     line=plt.plot(training_set_size,train_scores.mean(axis=1),'--',label="training "+estimator_name)
     9     plt.plot(training_set_size,test_scores.mean(axis=1),'-',label="test "+estimator_name,c=line[0].get_color())
    10     plt.xlabel("Training set size")
    11     plt.ylabel("Score")
    12     plt.ylim(0,1.1)
    1 plot_learning_curve(Ridge(alpha=1),X,y)
    2 plot_learning_curve(LinearRegression(),X,y)
    3 plt.legend(loc=(0,1.05),ncol=2,fontsize=11)
    4 plt.show()
  • 相关阅读:
    docker指令汇总
    springboot(八) 嵌入式Servlet容器自动配置原理和容器启动原理
    RabbitMQ 消息确认机制
    RabbitMQ 最常用的三大模式
    RabbitMQ 核心概念
    RabbitMQ 之简单队列
    Spring 详解(三)------- SpringMVC拦截器使用
    slf4j 搭配 log4j2 处理日志
    Spring 详解(二)------- AOP关键概念以及两种实现方式
    Spring 详解(一)------- AOP前序
  • 原文地址:https://www.cnblogs.com/St-Lovaer/p/12245963.html
Copyright © 2011-2022 走看看