zoukankan      html  css  js  c++  java
  • Party All the Time(三分)

    In the Dark forest, there is a Fairy kingdom where all the spirits will go together and Celebrate the harvest every year. But there is one thing you may not know that they hate walking so much that they would prefer to stay at home if they need to walk a long way.According to our observation,a spirit weighing W will increase its unhappyness for S 3*W units if it walks a distance of S kilometers. 
    Now give you every spirit's weight and location,find the best place to celebrate the harvest which make the sum of unhappyness of every spirit the least.

    Input

    The first line of the input is the number T(T<=20), which is the number of cases followed. The first line of each case consists of one integer N(1<=N<=50000), indicating the number of spirits. Then comes N lines in the order that x [i]<=x [i+1]for all i(1<=i<N). The i-th line contains two real number : X i,W i, representing the location and the weight of the i-th spirit. ( |x i|<=10 6, 0<w i<15 )

    Output

    For each test case, please output a line which is "Case #X: Y", X means the number of the test case and Y means the minimum sum of unhappyness which is rounded to the nearest integer.

    Sample Input

    1
    4
    0.6 5
    3.9 10
    5.1 7
    8.4 10

    Sample Output

    Case #1: 832

    基本是三分模板题(注意w也是浮点数)

    代码:

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<map>
    #include<set>
    #include<stack>
    #include<queue>
    #include<vector>
    #include<cmath>
    
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    struct node
    {
    	double s;
    	double w;
    }p[maxn];
    int n;
    double fun(double x)
    {
    	double sum=0;
    	for(int t=0;t<n;t++)
    	{
    	double ss;
    	ss=fabs(p[t].s-x);
    	sum+=ss*ss*ss*p[t].w;	
    	}
    	return sum;
    }  
    int main()
    {
    	int T;
    	cin>>T;
    	for(int t=0;t<T;t++)
    	{
    		scanf("%d",&n);
    		for(int j=0;j<n;j++)
    		{
    			scanf("%lf%lf",&p[j].s,&p[j].w);
    		}
    		double l=p[0].s,r=p[n-1].s;
    		double m1,m2;
    		while(r-l>1e-6)
    		{
    			
    			m1=(l+r)/2;
    			m2=(m1+r)/2;
    			if(fun(m1)>fun(m2)+1e-6)
    			{
    				l=m1;
    			}
    			else
    			{
    				r=m2;
    			}
    		}
    		int sss=fun(l)+0.5;
    		cout<<"Case #"<<t+1<<": "<<sss<<endl;
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    COGS 2104. [NOIP2015]神奇的幻方
    洛谷 P1387 最大正方形
    包和一些常用的模块
    模块
    模块的导入和使用
    函数迭代器与生成器
    函数的小知识
    函数的闭包和装饰器
    函数的进阶
    初识函数
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781771.html
Copyright © 2011-2022 走看看