zoukankan      html  css  js  c++  java
  • C

    FJ's N (1 ≤ N ≤ 10,000) cows conveniently indexed 1..N are standing in a line. Each cow has a positive integer height (which is a bit of secret). You are told only the height H (1 ≤ H ≤ 1,000,000) of the tallest cow along with the index I of that cow.

    FJ has made a list of (0 ≤ R ≤ 10,000) lines of the form "cow 17 sees cow 34". This means that cow 34 is at least as tall as cow 17, and that every cow between 17 and 34 has a height that is strictly smaller than that of cow 17.

    For each cow from 1..N, determine its maximum possible height, such that all of the information given is still correct. It is guaranteed that it is possible to satisfy all the constraints.

    Input

    Line 1: Four space-separated integers: NIH and R 
    Lines 2.. R+1: Two distinct space-separated integers A and B (1 ≤ AB ≤ N), indicating that cow A can see cow B.

    Output

    Lines 1.. N: Line i contains the maximum possible height of cow i.

    Sample Input

    9 3 5 5
    1 3
    5 3
    4 3
    3 7
    9 8

    Sample Output

    5
    4
    5
    3
    4
    4
    5
    5
    5

    思路:用差分数组维护区间的增减,坑点是有可能出现相同区间,如果出现相同的区间就不用处理了,真坑,wa了,用map标记之前是否出现过

    其余应该比较简单

    代码:

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<cmath>
    #include<set>
    #include<stack>
    #include<map> 
    #define MAX 10005
    
    typedef long long ll;
    
    using namespace std;
    
    map<int,int>mp;
    int a[MAX];
    int d[MAX];
    int vis[1000005];
    int main()
    {
    	int N,I,H,R;
    	cin>>N>>I>>H>>R;
    	for(int t=1;t<=N;t++)
    	{
    		a[t]=H;
    	}
    	for(int t=1;t<=N;t++)
    	{
    		d[t]=a[t]-a[t-1];
    	}
    	int l,r;
    	for(int t=0;t<R;t++)
    	{
    		scanf("%d%d",&l,&r);
    		if(max(l,r)-min(l,r)>=2&&mp[l]!=r)
    		{
    			d[min(l,r)+1]--;
    			d[max(l,r)]++;
    		    mp[l]=r;
    		}
    	}
    
    	for(int t=1;t<=N;t++)
    	{
    		a[t]=a[t-1]+d[t];
    	}
        for(int t=1;t<=N;t++)
        {
        	cout<<a[t]<<endl;
    	}
        return 0;
    }
    
  • 相关阅读:
    转 无障碍阅读 role aria-*
    (转)edm注意事项
    Spring IOC机制之使用注解配置bean
    Spring IOC机制使用SpEL
    使用Spring IOC容器引用外部属性文件
    如何将属性文件中的值保存到类中
    基于XML的类的属性的装配
    Java——事务
    Eclipse中使用Spring IOC容器的具体方法
    Java之批处理的实现
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781798.html
Copyright © 2011-2022 走看看