zoukankan      html  css  js  c++  java
  • Number Sequence (KMP第一次出现位置)

    Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. 

    Input

    The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. 

    Output

    For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. 

    Sample Input

    2
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 1 3
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 2 1

    Sample Output

    6
    -1

    思路:将第一次出现的i减去自身长度就可以了

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    void kmp_pre(int x[],int m,int next[]) {
    	int i,j;
    	j=next[0]=-1;
    	i=0;
    	while(i<m) {
    		while(-1!=j && x[i]!=x[j])j=next[j];
    		next[++i]=++j;
    	}
    }
    int next1[1000010];
    int KMP_Count(int x[],int m,int y[],int n) { //x 是模式串,y 是主串
    	int i,j;
    	int ans=-1;
    //preKMP(x,m,next);
    	kmp_pre(x,m,next1);
    	i=j=0;
    	while(i<n) {
    		while(-1!=j && y[i]!=x[j])j=next1[j];
    		i++;
    		j++;
    //		cout<<m<<endl;
    		if(j>=m) {
    			ans=i+1-m;
    //		    cout<<next[j]<<endl;
    			j=next1[j];
    			break;
    		
    		}
    	}
    	return ans;
    }
    
    int  a[10005];
    int b[1000005];
    
    int main() {
    	int T;
    	cin>>T;
    	int lena,lenb;
    	while(T--) {
    		scanf("%d %d",&lena,&lenb);
    	    for(int t=0;t<lena;t++)
    	    {
    	    	scanf("%d",&a[t]);
    		}
    		for(int t=0;t<lenb;t++)
    		{
    			scanf("%d",&b[t]);
    		}
    		printf("%d
    ",KMP_Count(b,lenb,a,lena));
    	}
    
    
    	return 0;
    }
    
  • 相关阅读:
    appium自动化测试搭建
    How to install Qt Creator on Ubuntu 18.04
    Luci
    OpenWrt 根文件系统启动过程分析
    shell 杂烩
    OpenWrt Luci 调试日志输出的一种方法
    jQuery实现购物车计算价格的方法
    js实现购物车添加,减少数量
    golang-键盘录入数据
    JAVA存储机制(栈、堆、方法区详解)
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781819.html
Copyright © 2011-2022 走看看