zoukankan      html  css  js  c++  java
  • The Unique MST(最小生成树的唯一性判断)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<map>
    #include<cmath>
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    int pre[maxn],n,m,first;
     
    struct node
    {
        int x,y,val;
        int u;
        int e;
        int d;
    } p[maxn];
    int find(int x)
    {
        if(pre[x]==x)
        {
            return x;
        }
        else
        {
            return pre[x]=find(pre[x]);
        }
    }
    int prime()
    {
        int i,j,k,sum,num;
        sum=0;num=0;
        for(i=1;i<=n;i++) 
        pre[i]=i;
        for(i=1;i<=m;i++) {
            if(p[i].d) continue;
            int fx=find(p[i].x);
            int fy=find(p[i].y);
            if(fx!=fy) {
                num++;
                pre[fx]=fy;
                sum+=p[i].val;
                if(first) 
                p[i].u=1;
            }
            if(num==n-1) break;
        }
        return sum;
    }
    bool cmp(node x,node y)
    {
        if(x.val<y.val)
        return true;
        else
        return false;
    }
    int main()
    {
        int k,u,v,w,sum1,sum2;
        int T;
        scanf("%d",&T);
        while(T--) 
        {
            sum1=sum2=0;
            memset(p,0,sizeof(p));
            scanf("%d%d",&n,&m);
            for(int i=1;i<=m;i++) 
            {
                scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].val);
            }
            for(int i=1;i<=m;i++) {
                for(int j=i+1;j<=m;j++) 
                {
                    if(p[i].val==p[j].val) p[i].e=1;
                }
            }
            sort(p+1,p+1+m,cmp);
            first=1;
            sum1=prime();
            first=0;
            bool flag=false;
            for(int i=1;i<=m;i++) 
            {
                if(p[i].u && p[i].e) 
                {
                    
                    p[i].d=1;
                    sum2=prime();
                    if(sum1==sum2) 
                    {
                        flag=true;
                        printf("Not Unique!
    ");
                        break;
                    }
                }
            }
            if(!flag) 
            printf("%d
    ",sum1);
        }
    }
  • 相关阅读:
    Nginx的启动、停止与重启
    linux环境下安装nginx步骤
    关于Nginx的负载均衡
    【Nginx】实现动静分离
    nginx中的反向代理
    Nignx的简介
    ERROR 1822 (HY000): Failed to add the foreign key constraint. Missing index for constraint 'orderite
    mysql出现“ You can't specify target table '表名' for update in FROM clause”解决方法
    SpringMvc的工作原理图
    【Java多线程】Java中的13个原子操作类(十九)
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11135078.html
Copyright © 2011-2022 走看看