zoukankan      html  css  js  c++  java
  • Easy Game(记忆化搜索)

    You are playing a two player game. Initially there are n integer numbers in an array and player A and B get chance to take them alternatively. Each player can take one or more numbers from the left or right end of the array but cannot take from both ends at a time. He can take as many consecutive numbers as he wants during his time. The game ends when all numbers are taken from the array by the players. The point of each player is calculated by the summation of the numbers, which he has taken. Each player tries to achieve more points from other. If both players play optimally and player A starts the game then how much more point can player A get than player B?

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the size of the array. The next line contains Nspace separated integers. You may assume that no number will contain more than 4 digits.

    Output

    For each test case, print the case number and the maximum difference that the first player obtained after playing this game optimally.

    Sample Input

    2

    4

    4 -10 -20 7

    4

    1 2 3 4

    Sample Output

    Case 1: 7

    Case 2: 10

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<map>
    #define Inf 0x3f3f3f3f
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    
    int dp[205][205];
    int sum[205];
    int n;
    int dfs(int l,int r)
    {
        if(dp[l][r]!=-Inf)
        {
            return dp[l][r];
        }
        if(l>r)
        {
            return 0;
        }
        int ans=-Inf;
        for(int t=1;t<=n;t++)
        {
            if(l+t<=r+1)
            ans=max(ans,sum[l+t-1]-sum[l-1]-dfs(l+t,r));
        }
        for(int t=1;t<=n;t++)
        {
            if(r-t>=l-1)
            ans=max(ans,sum[r]-sum[r-t]-dfs(l,r-t));    
        }
    //    cout<<l<<" "<<r<<" "<<ans<<endl;
        return dp[l][r]=ans;
    }
    int main()
    {
       int T;
       cin>>T;
       int cnt=1;
       while(T--)
       {
           scanf("%d",&n);
           for(int t=0;t<=n;t++)
           {
               for(int j=0;j<=n;j++)
               {
                   dp[t][j]=-Inf;
            }
        }
           memset(sum,0,sizeof(sum));
           int x;
           for(int t=1;t<=n;t++)
           {
               scanf("%d",&x);
               dp[t][t]=x;
               sum[t]=sum[t-1]+x;
        }
        dfs(1,n);
        printf("Case %d: %d
    ",cnt++,dp[1][n]);
       }
       return 0;
    }
  • 相关阅读:
    PAT 甲题 1155 Heap Paths
    PAT甲题 1014 Waiting in Line
    PAT甲题 1014 Waiting in Line
    AcWing 840. 模拟散列表
    2019新生赛 %%%xxh
    AcWing 240. 食物链
    AcWing 143. 最大异或对
    AcWing 838. 堆排序
    AcWing 836. 合并集合
    AcWing 837. 连通块中点的数量
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11248746.html
Copyright © 2011-2022 走看看