zoukankan      html  css  js  c++  java
  • Lucene教程(转)

    Lucene教程

    1 lucene简介
    1.1 什么是lucene
        Lucene是一个全文搜索框架,而不是应用产品。因此它并不像www.baidu.com 或者google Desktop那么拿来就能用,它只是提供了一种工具让你能实现这些产品。
    2 lucene的工作方式
        lucene提供的服务实际包含两部分:一入一出。所谓入是写入,即将你提供的源(本质是字符串)写入索引或者将其从索引中删除;所谓出是读出,即向用户提供全文搜索服务,让用户可以通过关键词定位源。
    2.1写入流程
        源字符串首先经过analyzer处理,包括:分词,分成一个个单词;去除stopword(可选)。
    将源中需要的信息加入Document的各个Field中,并把需要索引的Field索引起来,把需要存储的Field存储起来。
        将索引写入存储器,存储器可以是内存或磁盘。
    2.2读出流程
        用户提供搜索关键词,经过analyzer处理。
    对处理后的关键词搜索索引找出对应的Document。
    用户根据需要从找到的Document中提取需要的Field。
    3 一些需要知道的概念
    3.1 analyzer
        Analyzer是分析器,它的作用是把一个字符串按某种规则划分成一个个词语,并去除其中的无效词语,这里说的无效词语是指英文中的“of”、“the”,中文中的“的”、“地”等词语,这些词语在文章中大量出现,但是本身不包含什么关键信息,去掉有利于缩小索引文件、提高效率、提高命中率。
      分词的规则千变万化,但目的只有一个:按语义划分。这点在英文中比较容易实现,因为英文本身就是以单词为单位的,已经用空格分开;而中文则必须以某种方法将连成一片的句子划分成一个个词语。具体划分方法下面再详细介绍,这里只需了解分析器的概念即可。
    3.2 document
      用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。
    3.3 field
        一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。
        Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。这看起来似乎有些废话,事实上对这两个属性的正确组合很重要,下面举例说明:还是以刚才的文章为例子,我们需要对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。
    3.4 term
      term是搜索的最小单位,它表示文档的一个词语,term由两部分组成:它表示的词语和这个词语所出现的field。
    3.5 tocken
        tocken是term的一次出现,它包含trem文本和相应的起止偏移,以及一个类型字符串。一句话中可以出现多次相同的词语,它们都用同一个term表示,但是用不同的tocken,每个tocken标记该词语出现的地方。
    3.6 segment
        添加索引时并不是每个document都马上添加到同一个索引文件,它们首先被写入到不同的小文件,然后再合并成一个大索引文件,这里每个小文件都是一个segment。
    4 如何建索引
    4.1 最简单的能完成索引的代码片断
    IndexWriter writer = new IndexWriter(“/data/index/”, new StandardAnalyzer(), true);
    Document doc = new Document();
    doc.add(new Field("title", "lucene introduction", Field.Store.YES, Field.Index.TOKENIZED));
    doc.add(new Field("content", "lucene works well", Field.Store.YES, Field.Index.TOKENIZED));
    writer.addDocument(doc);
    writer.optimize();
    writer.close();
    下面我们分析一下这段代码。
    首先我们创建了一个writer,并指定存放索引的目录为“/data/index”,使用的分析器为StandardAnalyzer,第三个参数说明如果已经有索引文件在索引目录下,我们将覆盖它们。然后我们新建一个document。
      我们向document添加一个field,名字是“title”,内容是“lucene introduction”,对它进行存储并索引。再添加一个名字是“content”的field,内容是“lucene works well”,也是存储并索引。
    然后我们将这个文档添加到索引中,如果有多个文档,可以重复上面的操作,创建document并添加。
    添加完所有document,我们对索引进行优化,优化主要是将多个segment合并到一个,有利于提高索引速度。
       随后将writer关闭,这点很重要。
       对,创建索引就这么简单!
      当然你可能修改上面的代码获得更具个性化的服务。
    4.2 索引文本文件
        如果你想把纯文本文件索引起来,而不想自己将它们读入字符串创建field,你可以用下面的代码创建field:
    Field field = new Field("content", new FileReader(file));
        这里的file就是该文本文件。该构造函数实际上是读去文件内容,并对其进行索引,但不存储。

     

     

    Lucene 2 教程

    Lucene是apache组织的一个用java实现全文搜索引擎的开源项目。 其功能非常的强大,api也很简单。总得来说用Lucene来进行建立 和搜索和操作数据库是差不多的(有点像),Document可以看作是 数据库的一行记录,Field可以看作是数据库的字段。用lucene实 现搜索引擎就像用JDBC实现连接数据库一样简单。

    Lucene2.0,它与以前广泛应用和介绍的Lucene 1.4.3并不兼容。 Lucene2.0的下载地址是http://apache.justdn.org/lucene/java/


    例子一 :

    1、在windows系统下的的C盘,建一个名叫s的文件夹,在该文件夹里面随便建三个txt文件,随便起名啦,就叫"1.txt","2.txt"和"3.txt"啦 
    其中1.txt的内容如下:

    中华人民共和国   
    全国人民   
    2006年  

    而"2.txt"和"3.txt"的内容也可以随便写几写,这里懒写,就复制一个和1.txt文件的内容一样吧

    2、下载lucene包,放在classpath路径中 
    建立索引:

    package lighter.javaeye.com;   
      
    import java.io.BufferedReader;   
    import  java.io.File;   
    import java.io.FileInputStream;   
    import  java.io.IOException;   
    import java.io.InputStreamReader;   
    import  java.util.Date;   
      
    import  org.apache.lucene.analysis.Analyzer;   
    import org.apache.lucene.analysis.standard.StandardAnalyzer;   
    import org.apache.lucene.document.Document;   
    import org.apache.lucene.document.Field;   
    import org.apache.lucene.index.IndexWriter;   
      
    /** */ /**   
     * author lighter date 2006-8-7  
      */   
    public   class TextFileIndexer  {   
        public   static   void  main(String[] args)  throws Exception  {   
            /**/ /*  指明要索引文件夹的位置,这里是C盘的S文件夹下 */   
            File fileDir =   new  File( " c:\s " );   
      
            /**/ /*  这里放索引文件的位置  */   
            File indexDir =   new  File( " c:\index " );   
            Analyzer luceneAnalyzer =   new  StandardAnalyzer();   
            IndexWriter indexWriter =   new  IndexWriter(indexDir, luceneAnalyzer,   
                    true );   
            File[] textFiles =  fileDir.listFiles();   
            long  startTime  =   new Date().getTime();   
               
            // 增加document到索引去    
            for  ( int  i  =   0 ; i  < textFiles.length; i ++ )  {   
                if  (textFiles[i].isFile()   
                        &&  textFiles[i].getName().endsWith( " .txt " ))  {   
                    System.out.println(" File  "   + textFiles[i].getCanonicalPath()   
                            +   " 正在被索引. " );   
                    String temp =  FileReaderAll(textFiles[i].getCanonicalPath(),   
                            " GBK " );   
                    System.out.println(temp);   
                    Document document =   new  Document();   
                    Field FieldPath =   new  Field( " path ", textFiles[i].getPath(),   
                            Field.Store.YES, Field.Index.NO);   
                    Field FieldBody =   new  Field( " body ", temp, Field.Store.YES,   
                            Field.Index.TOKENIZED,   
                            Field.TermVector.WITH_POSITIONS_OFFSETS);   
                    document.add(FieldPath);   
                    document.add(FieldBody);   
                    indexWriter.addDocument(document);   
                }   
            }   
            // optimize()方法是对索引进行优化    
            indexWriter.optimize();   
            indexWriter.close();   
               
            // 测试一下索引的时间    
            long  endTime  =   new  Date().getTime();   
            System.out   
                    .println(" 这花费了"   
                            +  (endTime  -  startTime)   
                            +   "  毫秒来把文档增加到索引里面去! "   
                            +  fileDir.getPath());   
        }    
      
         public   static String FileReaderAll(String FileName, String charset)   
                throws  IOException  {   
            BufferedReader reader =   new  BufferedReader( new InputStreamReader(   
                    new  FileInputStream(FileName), charset));   
            String line =   new  String();   
            String temp =   new  String();   
               
            while  ((line  =  reader.readLine())  !=   null)  {   
                temp +=  line;   
            }   
            reader.close();   
            return  temp;   
        }    
    }  

    索引的结果:

    File C:s 1 .txt正在被索引.   
    中华人民共和国全国人民2006年   
    File C:s 2 .txt正在被索引.   
    中华人民共和国全国人民2006年   
    File C:s 3 .txt正在被索引.   
    中华人民共和国全国人民2006年   
    这花费了297 毫秒来把文档增加到索引里面去 ! c:s  


    3、建立了索引之后,查询啦....

    package  lighter.javaeye.com;   
      
    import java.io.IOException;   
      
    import org.apache.lucene.analysis.Analyzer;   
    import org.apache.lucene.analysis.standard.StandardAnalyzer;   
    import  org.apache.lucene.queryParser.ParseException;   
    import org.apache.lucene.queryParser.QueryParser;   
    import org.apache.lucene.search.Hits;   
    import org.apache.lucene.search.IndexSearcher;   
    import org.apache.lucene.search.Query;   
      
    public   class TestQuery  {   
        public   static   void  main(String[] args)  throws IOException, ParseException  {   
            Hits hits =   null ;   
            String queryString =   " 中华 ";   
            Query query =   null ;   
            IndexSearcher searcher =   new  IndexSearcher( " c:\index " );   
      
            Analyzer analyzer =   new  StandardAnalyzer();   
            try   {   
                QueryParser qp =   new  QueryParser( " body ", analyzer);   
                query =  qp.parse(queryString);   
            }  catch  (ParseException e)  {   
            }   
            if  (searcher  !=   null )  {   
                hits =  searcher.search(query);   
                if  (hits.length()  >   0 )  {   
                    System.out.println(" 找到: "  +  hits.length()  +   "  个结果! " );   
                }   
            }   
        }  
      
    }   

    其运行结果:

    找到: 3  个结果!

    Lucene 其实很简单的,它最主要就是做两件事:建立索引和进行搜索 
    来看一些在lucene中使用的术语,这里并不打算作详细的介绍,只是点一下而已----因为这一个世界有一种好东西,叫搜索。

    IndexWriter:lucene中最重要的的类之一,它主要是用来将文档加入索引,同时控制索引过程中的一些参数使用。

    Analyzer:分析器,主要用于分析搜索引擎遇到的各种文本。常用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。

    Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。一般情况将索引放在磁盘上;相应地lucene提供了FSDirectory和RAMDirectory两个类。

    Document:文档;Document相当于一个要进行索引的单元,任何可以想要被索引的文件都必须转化为Document对象才能进行索引。

    Field:字段。

    IndexSearcher:是lucene中最基本的检索工具,所有的检索都会用到IndexSearcher工具;

    Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,如有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。

    QueryParser: 是一个解析用户输入的工具,可以通过扫描用户输入的字符串,生成Query对象。

    Hits:在搜索完成之后,需要把搜索结果返回并显示给用户,只有这样才算是完成搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。

    上面作了一大堆名词解释,下面就看几个简单的实例吧: 
    1、简单的的StandardAnalyzer测试例子

    package  lighter.javaeye.com;   
      
    import java.io.IOException;   
    import java.io.StringReader;   
      
    import org.apache.lucene.analysis.Analyzer;   
    import  org.apache.lucene.analysis.Token;   
    import org.apache.lucene.analysis.TokenStream;   
    import org.apache.lucene.analysis.standard.StandardAnalyzer;   
      
    public   class StandardAnalyzerTest    
    {   
         // 构造函数,    
         public StandardAnalyzerTest()   
        {   
        }    
         public   static  void  main(String[] args)    
        {   
            // 生成一个StandardAnalyzer对象    
            Analyzer aAnalyzer =   new  StandardAnalyzer();   
            // 测试字符串   
            StringReader sr =   new  StringReader( "lighter javaeye com is the are on ");   
            // 生成TokenStream对象    
            TokenStream ts =  aAnalyzer.tokenStream( " name ", sr);    
            try   {   
                int  i = 0 ;   
                Token t =  ts.next();   
                while (t != null )   
                {   
                    // 辅助输出时显示行号   
                    i++ ;   
                    // 输出处理后的字符   
                    System.out.println(" 第 " + i + " 行: " + t.termText());   
                    // 取得下一个字符   
                    t= ts.next();   
                }   
            }  catch  (IOException e)  {   
                e.printStackTrace();   
            }   
        }    
    }    

    显示结果:

    第1行:lighter 
    第2行:javaeye 
    第3行:com

    提示一下: 
    StandardAnalyzer是lucene中内置的"标准分析器",可以做如下功能: 
    1、对原有句子按照空格进行了分词 
    2、所有的大写字母都可以能转换为小写的字母 
    3、可以去掉一些没有用处的单词,例如"is","the","are"等单词,也删除了所有的标点 
    查看一下结果与"newStringReader("lighter javaeye com is the are on")"作一个比较就清楚明了。 
    这里不对其API进行解释了,具体见lucene的官方文档。需要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的差别。

    2、看另一个实例,简单地建立索引,进行搜索

    package lighter.javaeye.com;   
    import org.apache.lucene.analysis.standard.StandardAnalyzer;   
    import org.apache.lucene.document.Document;   
    import org.apache.lucene.document.Field;   
    import  org.apache.lucene.index.IndexWriter;   
    import org.apache.lucene.queryParser.QueryParser;   
    import org.apache.lucene.search.Hits;   
    import org.apache.lucene.search.IndexSearcher;   
    import org.apache.lucene.search.Query;   
    import org.apache.lucene.store.FSDirectory;   
      
    public   class FSDirectoryTest  {   
      
         // 建立索引的路径    
         public   static  final  String path  =   " c:\index2 ";   
      
        public   static   void  main(String[] args)  throws Exception  {   
            Document doc1 =   new  Document();   
            doc1.add( new  Field( " name " ,  "lighter javaeye com " ,Field.Store.YES,Field.Index.TOKENIZED));   
      
            Document doc2 =   new  Document();   
            doc2.add(new  Field( " name " ,  " lighter blog ",Field.Store.YES,Field.Index.TOKENIZED));   
      
            IndexWriter writer =   new  IndexWriter(FSDirectory.getDirectory(path,  true),  new  StandardAnalyzer(),  true );   
            writer.setMaxFieldLength(3 );   
            writer.addDocument(doc1);   
            writer.setMaxFieldLength(3 );   
            writer.addDocument(doc2);   
            writer.close();   
      
            IndexSearcher searcher =   new  IndexSearcher(path);   
            Hits hits =   null ;   
            Query query =   null ;   
            QueryParser qp =   new  QueryParser( " name " , new StandardAnalyzer());   
               
            query =  qp.parse( " lighter " );   
            hits =  searcher.search(query);   
            System.out.println(" 查找 " lighter "  共 "   +  hits.length()  +  " 个结果 " );   
      
            query =  qp.parse( " javaeye " );   
            hits =  searcher.search(query);   
            System.out.println(" 查找 " javaeye "  共 "   +  hits.length()  +  " 个结果 " );   
      
        }    
      
    }   

    运行结果:

    查找 " lighter "  共2个结果   
    查找 " javaeye "  共1个结果 


    到现在我们已经可以用lucene建立索引了
    下面介绍一下几个功能来完善一下:
    1.索引格式

    其实索引目录有两种格式,

    一种是除配置文件外,每一个Document独立成为一个文件(这种搜索起来会影响速度)。

    另一种是全部的Document成一个文件,这样属于复合模式就快了。

    2.索引文件可放的位置:

    索引可以存放在两个地方1.硬盘,2.内存
    放在硬盘上可以用FSDirectory(),放在内存的用RAMDirectory()不过一关机就没了

    FSDirectory.getDirectory(File file, boolean  create)
    FSDirectory.getDirectory(String path, boolean  create)

    两个工厂方法返回目录
    New RAMDirectory()就直接可以
    再和

    IndexWriter(Directory d, Analyzer a, boolean  create)

    一配合就行了
    如:

    IndexWrtier indexWriter  =  new  IndexWriter(FSDirectory.getDirectory(“c:\index”, true ), new StandardAnlyazer(), true );
    IndexWrtier indexWriter  =  new  IndexWriter( new  RAMDirectory(), new  StandardAnlyazer(),true );

    3.索引的合并
    这个可用

    IndexWriter.addIndexes(Directory[] dirs)

    将目录加进去
    来看个例子:

    public   void  UniteIndex() throws  IOException
        {
            IndexWriter writerDisk =   new  IndexWriter(FSDirectory.getDirectory( " c:\indexDisk" ,  true ), new  StandardAnalyzer(), true );
            Document docDisk =   new  Document();
            docDisk.add(new  Field( " name " , " 程序员之家 " ,Field.Store.YES,Field.Index.TOKENIZED));
            writerDisk.addDocument(docDisk);
            RAMDirectory ramDir =   new  RAMDirectory();
            IndexWriter writerRam =   new  IndexWriter(ramDir, new  StandardAnalyzer(), true );
            Document docRam =   new  Document();
            docRam.add(new  Field( " name " , " 程序员杂志 " ,Field.Store.YES,Field.Index.TOKENIZED));
            writerRam.addDocument(docRam);
            writerRam.close();// 这个方法非常重要,是必须调用的 
            writerDisk.addIndexes(new  Directory[] {ramDir} );
            writerDisk.close();
        } 
         public   void UniteSearch()  throws  ParseException, IOException
        {
            QueryParser queryParser =   new  QueryParser( " name " , new StandardAnalyzer());
            Query query =  queryParser.parse( " 程序员 " );
            IndexSearcher indexSearcher = new  IndexSearcher( " c:\indexDisk " );
            Hits hits =  indexSearcher.search(query);
            System.out.println(" 找到了 " + hits.length() + " 结果 " );
            for ( int  i = 0 ;i
            {
                Document doc =  hits.doc(i);
                System.out.println(doc.get(" name " ));
            }
    }


    这个例子是将内存中的索引合并到硬盘上来.
    注意:合并的时候一定要将被合并的那一方的IndexWriter的close()方法调用。

    4.对索引的其它操作:
    IndexReader类是用来操作索引的,它有对Document,Field的删除等操作。
    下面一部分的内容是:全文的搜索
    全文的搜索主要是用:IndexSearcher,Query,Hits,Document(都是Query的子类),有的时候用QueryParser
    主要步骤:

    1 . new  QueryParser(Field字段, new  分析器)
    2 .Query query  = QueryParser.parser(“要查询的字串”);这个地方我们可以用反射api看一下query究竟是什么类型
    3 . new  IndexSearcher(索引目录).search(query);返回Hits
    4 .用Hits.doc(n);可以遍历出Document
    5 .用Document可得到Field的具体信息了。

    其实1 ,2两步就是为了弄出个Query 实例,究竟是什么类型的看分析器了。

    拿以前的例子来说吧

    QueryParser queryParser  =  new  QueryParser( " name " , new  StandardAnalyzer());
            Query query =  queryParser.parse( " 程序员 " );
    /**/ /* 这里返回的就是org.apache.lucene.search.PhraseQuery */ 
            IndexSearcher indexSearcher = new  IndexSearcher( " c:\indexDisk " );
            Hits hits =  indexSearcher.search(query);


    不管是什么类型,无非返回的就是Query的子类,我们完全可以不用这两步直接new个Query的子类的实例就ok了,不过一般还是用这两步因为它返回的是PhraseQuery这个是非常强大的query子类它可以进行多字搜索用QueryParser可以设置各个关键字之间的关系这个是最常用的了。
    IndexSearcher:
    其实IndexSearcher它内部自带了一个IndexReader用来读取索引的,IndexSearcher有个close()方法,这个方法不是用来关闭IndexSearche的是用来关闭自带的IndexReader。

    QueryParser呢可以用parser.setOperator()来设置各个关键字之间的关系(与还是或)它可以自动通过空格从字串里面将关键字分离出来。
    注意:用QueryParser搜索的时候分析器一定的和建立索引时候用的分析器是一样的。
    Query:
    可以看一个lucene2.0的帮助文档有很多的子类:
    BooleanQuery, ConstantScoreQuery, ConstantScoreRangeQuery, DisjunctionMaxQuery,FilteredQuery, MatchAllDocsQuery, MultiPhraseQuery, MultiTermQuery,PhraseQuery, PrefixQuery, RangeQuery, SpanQuery, TermQuery
    各自有用法看一下文档就能知道它们的用法了
    下面一部分讲一下lucene的分析器:
    分析器是由分词器和过滤器组成的,拿英文来说吧分词器就是通过空格把单词分开,过滤器就是把the,to,of等词去掉不被搜索和索引。
    我们最常用的是StandardAnalyzer()它是lucene的标准分析器它集成了内部的许多的分析器。
    最后一部分了:lucene的高级搜索了
    1.排序
    Lucene有内置的排序用IndexSearcher.search(query,sort)但是功能并不理想。我们需要自己实现自定义的排序。
    这样的话得实现两个接口: ScoreDocComparator,SortComparatorSource
    用IndexSearcher.search(query,newSort(new SortField(String Field,SortComparatorSource)));
    就看个例子吧:
    这是一个建立索引的例子:

    public   void  IndexSort() throws  IOException
    {
            IndexWriter writer =   new  IndexWriter( " C:\indexStore " , new StandardAnalyzer(), true );
            Document doc =   new  Document()
            doc.add(new  Field( " sort " , " 1 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 4 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 3 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 5 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 9 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 6 " ,Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            doc =   new  Document();
            doc.add(new  Field( " sort " , " 7 ",Field.Store.YES,Field.Index.TOKENIZED));
            writer.addDocument(doc);
            writer.close();


    下面是搜索的例子:
    [code]
    public void SearchSort1() throws IOException, ParseException
    {
            IndexSearcher indexSearcher = newIndexSearcher("C:\indexStore");
            QueryParser queryParser = newQueryParser("sort",new StandardAnalyzer());
            Query query =queryParser.parse("4");
           
            Hits hits =indexSearcher.search(query);
            System.out.println("有"+hits.length()+"个结果");
            Document doc = hits.doc(0);
           System.out.println(doc.get("sort"));
    }
    public void SearchSort2() throws IOException, ParseException
    {
            IndexSearcher indexSearcher = newIndexSearcher("C:\indexStore");
            Query query = new RangeQuery(newTerm("sort","1"),newTerm("sort","9"),true);//这个地方前面没有提到,它是用于范围的Query可以看一下帮助文档.
            Hits hits =indexSearcher.search(query,new Sort(new SortField("sort",newMySortComparatorSource())));
            System.out.println("有"+hits.length()+"个结果");
            for(int i=0;i
            {
                Document doc= hits.doc(i);
               System.out.println(doc.get("sort"));
            }
    }
    public class MyScoreDocComparator implements ScoreDocComparator
    {
        private Integer[]sort;
        public MyScoreDocComparator(String s,IndexReader reader,String fieldname) throws IOException
        {
            sort = new Integer[reader.maxDoc()];
            for(int i = 0;i
            {
                Document doc=reader.document(i);
                sort[i]=newInteger(doc.get("sort"));
            }
        }
        public int compare(ScoreDoc i, ScoreDoc j)
        {
            if(sort[i.doc]>sort[j.doc])
                return 1;
            if(sort[i.doc]
                return -1;
            return 0;
        }
        public int sortType()
        {
            return SortField.INT;
        }
        public Comparable sortValue(ScoreDoc i)
        {
            // TODO 自动生成方法存根
            return new Integer(sort[i.doc]);
        }
    }
    public class MySortComparatorSource implements SortComparatorSource
    {
        private static final long serialVersionUID =-9189690812107968361L;
        public ScoreDocComparator newComparator(IndexReader reader,String fieldname)
                throwsIOException
        {
           if(fieldname.equals("sort"))
                return newMyScoreDocComparator("sort",reader,fieldname);
            return null;
        }
    }[/code]
    SearchSort1()输出的结果没有排序,SearchSort2()就排序了。
    2.多域搜索MultiFieldQueryParser
    如果想输入关键字而不想关心是在哪个Field里的就可以用MultiFieldQueryParser了
    用它的构造函数即可后面的和一个Field一样。
    MultiFieldQueryParser. parse(String[] queries, String[] fields,BooleanClause.Occur[] flags, Analyzeranalyzer)                                         ~~~~~~~~~~~~~~~~~
    第三个参数比较特殊这里也是与以前lucene1.4.3不一样的地方
    看一个例子就知道了
    String[] fields = {"filename", "contents", "description"};
     BooleanClause.Occur[] flags = {BooleanClause.Occur.SHOULD,
                   BooleanClause.Occur.MUST,//在这个Field里必须出现的
                   BooleanClause.Occur.MUST_NOT};//在这个Field里不能出现
     MultiFieldQueryParser.parse("query", fields, flags, analyzer);

    1、lucene的索引不能太大,要不然效率会很低。大于1G的时候就必须考虑分布索引的问题

    2、不建议用多线程来建索引,产生的互锁问题很麻烦。经常发现索引被lock,无法重新建立的情况

    3、中文分词是个大问题,目前免费的分词效果都很差。如果有能力还是自己实现一个分词模块,用最短路径的切分方法,网上有教材和demo源码,可以参考。

    4、建增量索引的时候很耗cpu,在访问量大的时候会导致cpu的idle为0

    5、默认的评分机制不太合理,需要根据自己的业务定制

    整体来说lucene要用好不容易,必须在上述方面扩充他的功能,才能作为一个商用的搜索引擎

  • 相关阅读:
    【转】《基于MFC的OpenGL编程》Part 5 Transformations Rotations, Translations and Scaling
    【转】 《基于MFC的OpenGL编程》Part 10 Texture Mapping
    【转】 《基于MFC的OpenGL编程》Part 11 Blending, Antialiasing and Fog
    win form 托盘功能的实现(引用CSDN)
    C# win form退出窗体时对话框实用
    智能DNS 笔记
    iis无法启动, 找出占用80端口的罪魁祸首
    gvim for windows的剪贴板操作
    内容交换
    Content Networking 读书笔记
  • 原文地址:https://www.cnblogs.com/Stephanie7464/p/5509022.html
Copyright © 2011-2022 走看看