资料:http://scikit-learn.org/dev/documentation.html
因为数学建模的关系,所以才临时了解了Python的一个开源项目 scikit-learn,
有很多东西没有弄懂,以后补充吧
写的第一个测试代码:
import numpy as np import sys sys.stdout = open('out.txt', 'w'); from sklearn.ensemble import RandomForestClassifier f = open('train1.txt', 'r') data = np.loadtxt(f) X = data[:, :-1] y = data[:, -1] from sklearn import cross_validation # X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) # y = np.array([1, 2, 3, 4]) kf = cross_validation.KFold(99, n_folds=2) # print len(kf) # print(kf) clf = RandomForestClassifier(n_jobs=-1,n_estimators=10) for train_index, test_index in kf: #print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf = clf.fit(X_train, y_train) ans = clf.predict(X_test) print ans print y_test