zoukankan      html  css  js  c++  java
  • 对C语言内存对齐的初步了解

    在解释内存对齐的作用前,先来看下内存对齐的规则:

    1、 对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据成员的偏移量必须是min(#pragma pack()指定的数,这个数据成员的自身长度) 的倍数。

    2、 在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。

    #pragma pack(n) 表示设置为n字节对齐。 VC6默认8字节对齐

    以程序1为例解释对齐的规则 :

    St1 :char占一个字节,起始偏移为0 ,int 占4个字节,min(#pragmapack()指定的数,这个数据成员的自身长度) = 4(VC6默认8字节对齐),所以int按4字节对齐,起始偏移必须为4的倍数,所以起始偏移为4,在char后编译器会添加3个字节的额外字节,不存放任意数据。short占2个字节,按2字节对齐,起始偏移为8,正好是2的倍数,无须添加额外字节。到此规则1的数据成员对齐结束,此时的内存状态为:

    oxxx|oooo|oo


    0123 4567 89 (地址)

    (x表示额外添加的字节)

    共占10个字节。还要继续进行结构本身的对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行,st1结构中最大数据成员长度为int,占4字节,而默认的#pragma pack 指定的值为8,所以结果本身按照4字节对齐,结构总大小必须为4的倍数,需添加2个额外字节使结构的总大小为12 。此时的内存状态为:

    oxxx|oooo|ooxx

    0123 4567 89ab  (地址)

    到此内存对齐结束。St1占用了12个字节而非7个字节。

    St2 的对齐方法和st1相同,读者可自己完成。

    内存对齐的主要作用是:

    1、 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

    2、 性能原因:经过内存对齐后,CPU的内存访问速度大大提升。具体原因稍后解释。

    图一:

    这是普通程序员心目中的内存印象,由一个个的字节组成,而CPU并不是这么看待的。

    图二:

    CPU把内存当成是一块一块的,块的大小可以是2,4,8,16字节大小,因此CPU在读取内存时是一块一块进行读取的。块大小成为memory accessgranularity(粒度)本人把它翻译为“内存读取粒度”。

    假设CPU要读取一个int型4字节大小的数据到寄存器中,分两种情况讨论:

    1、数据从0字节开始

    2、数据从1字节开始

    再次假设内存读取粒度为4。

    图三:

    当该数据是从0字节开始时,很CPU只需读取内存一次即可把这4字节的数据完全读取到寄存器中。

        当该数据是从1字节开始时,问题变的有些复杂,此时该int型数据不是位于内存读取边界上,这就是一类内存未对齐的数据。

    图四:

    此时CPU先访问一次内存,读取0—3字节的数据进寄存器,并再次读取4—5字节的数据进寄存器,接着把0字节和6,7,8字节的数据剔除,最后合并1,2,3,4字节的数据进寄存器。对一个内存未对齐的数据进行了这么多额外的操作,大大降低了CPU性能。

        这还属于乐观情况了,上文提到内存对齐的作用之一为平台的移植原因,因为以上操作只有有部分CPU肯干,其他一部分CPU遇到未对齐边界就直接罢工了。

  • 相关阅读:
    bzoj3527: [Zjoi2014]力 fft
    bzoj3295: [Cqoi2011]动态逆序对 cdq分治
    快速读入fread
    km板子(二分图最大权匹配)
    spfa毒瘤算法
    牛客网暑期ACM多校训练营(第三场)DEncrypted String Matching fft
    P4173 残缺的字符串 fft
    圆和多边形交模板
    hdu多校2C
    Codeforces Round #449 (Div. 1)C
  • 原文地址:https://www.cnblogs.com/Stomach-ache/p/3703187.html
Copyright © 2011-2022 走看看