zoukankan      html  css  js  c++  java
  • ACdream 1112

    题目链接

    Alice and Bob

    Time Limit: 6000/3000MS (Java/Others)Memory Limit: 256000/128000KB (Java/Others)

    Problem Description

    Here  is Alice and Bob again !

    Alice and Bob are playing a game. There are several numbers.First, Alice choose a number n.Then he can replace n (n > 1)with one of its positive factor but not itself or he can replace n with a and b.Here a*b = n and a > 1 and b > 1.For example, Alice can replace 6 with 2 or 3 or (2, 3).But he can’t replace 6 with 6 or (1, 6). But you can replace 6 with 1. After Alice’s turn, it’s Bob’s turn.Alice and Bob take turns to do so.Who can’t do any replace lose the game.

    Alice and Bob are both clever enough. Who is the winner?

    Input

    This problem contains multiple test cases. The first line contains one number n(1 <= n <= 100000).

    The second line contains n numbers.

    All the numbers are positive and less than of equal to 5000000.

    Output

    For each test case, if Alice can win, output “Alice”, otherwise output “Bob”.

    Sample Input

    2
    2 2
    3
    2 2 4

    Sample Output

    Bob
    Alice

    Source

    yehuijie

    Manager

    给出n个数,两个轮流任选一个数n进行操作,第一种操作是将该数变为他的一个因子,但是不能变为本身。
    第二种是变成两个数a和b,要满足a * b = n。a>1, b>1.
    第一次写线性筛,这个算法和普通的筛法略有不同,也更不好理解一点,就是说算法保证每个数只会被
    他的最小的质因子筛去。也保证了算法的时间是线性的。
    Accepted Code:
    /*************************************************************************
        > File Name: 1112.cpp
        > Author: Stomach_ache
        > Mail: sudaweitong@gmail.com
        > Created Time: 2014年09月05日 星期五 11时35分09秒
        > Propose: 
     ************************************************************************/
    #include <set>
    #include <cmath>
    #include <string>
    #include <cstdio>
    #include <fstream>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    /*Let's fight!!!*/
    
    const int MAX_N = 5000005;
    int n, pnum, p[MAX_N], mindiv[MAX_N], cnt[MAX_N];
    bool vis[MAX_N];
    
    //线性筛,可以很方便的保存每个数最小的质因子,
    //和每个数不同质因子的个数
    void get_prime(int n) {
        pnum = 0; vis[1] = true; cnt[1] = 0;
          for (int i = 2; i <= n; i++) {
            if (!vis[i]) {
                  p[pnum++] = i; mindiv[i] = i; cnt[i] = 1;
            }
            for (int j = 0; j < pnum; j++) {
                if (p[j] * i > n) break;
                vis[p[j] * i] = true;
                mindiv[p[j] * i] = p[j];
                cnt[p[j] * i] = cnt[i] + 1;
                if (i % p[j] == 0) break;
            }
        }
    }
    
    //记忆化搜索所用数组,初始化为-1
    int sg[35];
    int dfs(int n) {
        if (sg[n] != -1) return sg[n];
    
        set<int> S;
        //第一种转移变为因子a
        for (int i = 0; i < n; i++) S.insert(dfs(i));
        //第二种转移变为两个因子a * b
        for (int i = 1; i < n; i++) S.insert(dfs(i)^dfs(n - i));
    
        int g = 0;
        while (S.find(g) != S.end()) g++;
        return sg[n] = g;
    }
    
    void get_SG() {
        get_prime(5000000);
    
        memset(sg, -1, sizeof(sg));
        sg[0] = 0;
        for (int i = 1; i <= 33; i++) {
            sg[i] = dfs(i);                  
        }
    }
    
    int main(void) {
        get_SG(); //预处理sg值
        int n;
        while (~scanf("%d", &n)) {
            int ans = 0;
            for (int i = 0; i < n; i++) {
                int x;
                scanf("%d", &x);
                ans ^= sg[cnt[x]];
            }
            if (ans) puts("Alice");
            else puts("Bob");
        }
        return 0;
    }
  • 相关阅读:
    【转】JS模块化工具requirejs教程(二):基本知识
    【转】JS模块化工具requirejs教程(一):初识requirejs
    【转】批处理命令 For循环命令详解!
    【转】NodeJS教程--基于ExpressJS框架的文件上传
    【转】WebSocket 是什么原理?为什么可以实现持久连接?
    网页工具地址
    【转】DataURL在Web浏览器中的兼容性总结
    侯捷STL学习(一)--顺序容器测试
    strstr-strcat实现
    算法设计与分析
  • 原文地址:https://www.cnblogs.com/Stomach-ache/p/3958143.html
Copyright © 2011-2022 走看看