In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defined as the lowest vertex that is ancestor of both that two vertices.
Given a tree of N vertices, you need to answer the question of the form "r u v" which means if the root of the tree is at r then what is LCA of u and v.
Input
The first line contains a single integer N. Each line in the next N - 1 lines contains a pair of integer u andv representing a edge between this two vertices.
The next line contains a single integer Q which is the number of the queries. Each line in the next Q lines contains three integers r, u, v representing a query.
Output
For each query, write out the answer on a single line.
Constraints
20 points:
- 1 ≤ N, Q ≤ 100
40 points:
- 1 ≤ N, Q ≤ 105
- There is less than 10 unique value of r in all queries
40 points:
- 1 ≤ N, Q ≤ 2 × 105
Example
Input: 4 1 2 2 3 1 4 2 1 4 2 2 4 2 Output: 1 2Explanation
- "1 4 2": if 1 is the root, it is parent of both 2 and 4 so LCA of 2 and 4 is 1.
- "2 4 2": the root of the tree is at 2, according to the definition, LCA of any vertex with 2 is 2.
题意:给出一棵N个结点的树,有Q次询问,每次询问给出三个数r,x,y。
求当以r作为树根时,x和y的lca
解决本题,有两个关键的地方:
1. 每次询问的答案只可能是: x, y, r, lca(x, y), lca(x, r), lca(y, r),这里的lca都是以1为树根时的lca
2. 如果 x = lca(u, v), 那么dist(x, root) + dist(x, u) + dist(x, v)的值是最小的。
Accepted Code:
1 /************************************************************************* 2 > File Name: TALCA.cpp 3 > Author: Stomach_ache 4 > Mail: sudaweitong@gmail.com 5 > Created Time: 2014年09月24日 星期三 17时39分16秒 6 > Propose: 7 ************************************************************************/ 8 #include <cmath> 9 #include <string> 10 #include <cstdio> 11 #include <vector> 12 #include <fstream> 13 #include <cstring> 14 #include <iostream> 15 #include <algorithm> 16 using namespace std; 17 /*Let's fight!!!*/ 18 19 const int MAX_N = 200050; 20 const int MAX_LOG = 20; 21 typedef pair<int, int> pii; 22 int N, Q; 23 int p[MAX_N][MAX_LOG], depth[MAX_N]; 24 vector<int> G[MAX_N]; 25 26 void dfs(int u, int fa, int d) { 27 p[u][0] = fa; 28 depth[u] = d; 29 for (int i = 0; i < G[u].size(); i++) { 30 int v = G[u][i]; 31 if (v != fa) dfs(v, u, d + 1); 32 } 33 } 34 35 void init() { 36 dfs(1, -1, 0); 37 for (int k = 0; k + 1 < MAX_LOG; k++) { 38 for (int v = 1; v <= N; v++) { 39 if (p[v][k] < 0) p[v][k + 1] = -1; 40 else p[v][k + 1] = p[p[v][k]][k]; 41 } 42 } 43 } 44 45 int lca(int u, int v) { 46 if (depth[u] > depth[v]) swap(u, v); 47 for (int k = 0; k < MAX_LOG; k++) { 48 if ((depth[v] - depth[u]) >> k & 1) { 49 v = p[v][k]; 50 } 51 } 52 if (u == v) return u; 53 for (int k = MAX_LOG - 1; k >= 0; k--) { 54 if (p[u][k] != p[v][k]) { 55 u = p[u][k]; 56 v = p[v][k]; 57 } 58 } 59 return p[u][0]; 60 } 61 62 int dist(int u, int v) { 63 int x = lca(u, v); 64 return depth[u] + depth[v] - 2 * depth[x]; 65 } 66 67 int main(void) { 68 ios::sync_with_stdio(false); 69 while (cin >> N) { 70 for (int i = 1; i <= N; i++) G[i].clear(); 71 for (int i = 1; i < N; i++) { 72 int u, v; 73 cin >> u >> v; 74 G[u].push_back(v); 75 G[v].push_back(u); 76 } 77 78 init(); 79 cin >> Q; 80 pii s[6]; 81 while (Q--) { 82 int r, u, v; 83 cin >> r >> u >> v; 84 s[0].second = r; 85 s[1].second = u; 86 s[2].second = v; 87 s[3].second = lca(r, u); 88 s[4].second = lca(r, v); 89 s[5].second = lca(u, v); 90 for (int i = 0; i < 6; i++) { 91 int x = s[i].second; 92 s[i].first = dist(u, x) + dist(v, x) + dist(r, x); 93 } 94 sort(s, s + 6); 95 cout << s[0].second << endl; 96 } 97 } 98 return 0; 99 }