zoukankan      html  css  js  c++  java
  • MXNet 2 pytorch 模型转换

    1、先定义好pytorch的网络结构: 没怎么接触人脸识别  insightface提供r50 里是 IResBlock,第一个卷积还是3x3 而非7x7

    # -*- coding: utf-8 -*-
    """
    Created on 18-5-21 下午5:26
    @author: ronghuaiyang
    """
    import torch
    import torch.nn as nn
    import math
    import torch.utils.model_zoo as model_zoo
    import torch.nn.utils.weight_norm as weight_norm
    import torch.nn.functional as F
    
    
    # __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
    #            'resnet152']
    
    
    model_urls = {
        'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
        'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
        'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
        'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
        'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    }
    
    
    def conv3x3(in_planes, out_planes, stride=1):
        """3x3 convolution with padding"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                         padding=1, bias=False)
    
    
    class BasicBlock(nn.Module):
        expansion = 1
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(BasicBlock, self).__init__()
            self.conv1 = conv3x3(inplanes, planes, stride)
            self.bn1 = nn.BatchNorm2d(planes)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(planes, planes)
            self.bn2 = nn.BatchNorm2d(planes)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
    
            out += residual
            out = self.relu(out)
    
            return out
    
    
    class IRBlock(nn.Module):
        expansion = 1
    
        def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
            super(IRBlock, self).__init__()
            self.bn1 = nn.BatchNorm2d(inplanes)
            self.conv1 = conv3x3(inplanes, planes)
            self.bn2 = nn.BatchNorm2d(planes)
            self.relu1 = nn.LeakyReLU(0.25)#nn.PReLU()
            self.conv2 = conv3x3(planes, planes, stride)
            self.bn3 = nn.BatchNorm2d(planes)
            self.downsample = downsample
            self.stride = stride
            self.use_se = use_se
            if self.use_se:
                self.se = SEBlock(planes)
    
        def forward(self, x):
            residual = x
            out = self.bn0(x)
            out = self.conv1(out)
            out = self.bn1(out)
            out = self.prelu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            if self.use_se:
                out = self.se(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
    
            out += residual
            out = self.prelu(out)
    
            return out
    
    
    class Bottleneck(nn.Module):
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(Bottleneck, self).__init__()
            self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                                   padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
    
            out = self.conv3(out)
            out = self.bn3(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
    
            out += residual
            out = self.relu(out)
    
            return out
    
    
    class SEBlock(nn.Module):
        def __init__(self, channel, reduction=16):
            super(SEBlock, self).__init__()
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            self.fc = nn.Sequential(
                    nn.Linear(channel, channel // reduction),
                    nn.PReLU(),
                    nn.Linear(channel // reduction, channel),
                    nn.Sigmoid()
            )
    
        def forward(self, x):
            b, c, _, _ = x.size()
            y = self.avg_pool(x).view(b, c)
            y = self.fc(y).view(b, c, 1, 1)
            return x * y
    
    
    class ResNetFace(nn.Module):
        def __init__(self, block, layers, use_se=False):
            self.inplanes = 64
            self.use_se = use_se
            super(ResNetFace, self).__init__()
            self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1,stride=2, bias=False)
            self.bn0 = nn.BatchNorm2d(64)
            self.prelu = nn.LeakyReLU(0.25)#nn.PReLU()
            self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
            self.layer1 = self._make_layer(block, 64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
            self.bn1 = nn.BatchNorm2d(512)
            self.dropout = nn.Dropout()
            self.pre_fc1 = nn.Linear(512 * 7 * 7, 512)
            self.fc1 = nn.BatchNorm1d(512)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.xavier_normal_(m.weight)
                elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.xavier_normal_(m.weight)
                    nn.init.constant_(m.bias, 0)
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
            self.inplanes = planes
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes, use_se=self.use_se))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.prelu(x)
            x = self.maxpool(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            x = self.bn4(x)
            x = self.dropout(x)
            x = x.view(x.size(0), -1)
            x = self.fc5(x)
            x = self.bn5(x)
    
            return x
    
    
    class ResNet(nn.Module):
    
        def __init__(self, block, layers):
            self.inplanes = 64
            super(ResNet, self).__init__()
            # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
            #                        bias=False)
            self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1,
                                   bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
            # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
            # self.avgpool = nn.AvgPool2d(8, stride=1)
            # self.fc = nn.Linear(512 * block.expansion, num_classes)
            self.fc5 = nn.Linear(512 * 8 * 8, 512)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            # x = self.maxpool(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            # x = nn.AvgPool2d(kernel_size=x.size()[2:])(x)
            # x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.fc5(x)
    
            return x
    
    
    def resnet18(pretrained=False, **kwargs):
        """Constructs a ResNet-18 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        return model
    
    
    def resnet34(pretrained=False, **kwargs):
        """Constructs a ResNet-34 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
        return model
    
    
    def resnet50(pretrained=False, **kwargs):
        """Constructs a ResNet-50 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
        return model
    
    
    def resnet101(pretrained=False, **kwargs):
        """Constructs a ResNet-101 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
        return model
    
    
    def resnet152(pretrained=False, **kwargs):
        """Constructs a ResNet-152 model.
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
        return model
    
    
    def resnet_face18(use_se=True, **kwargs):
        model = ResNetFace(IRBlock, [2, 2, 2, 2], use_se=use_se, **kwargs)
        return model
    

      

    2、转换代码

    mxnet模型里json文件记录了模型相关的键名,

    import torch.nn as nn
    import torch.utils.checkpoint as cp
    import mxnet as mx 
    import torch
    from  resnet import ResNetFace,IRBlock
    archs = ['iresnet50']
    mx_model = './model-r50-am-lfw/model'
    mx_epoch = 14
    
    _,arg_params, aux_params = mx.model.load_checkpoint(mx_model,mx_epoch)
    
    class convert_model(object):
    
        def init_model(self, model,param_dict,aux_params):
            # print(model)
            layer=[3,4,14,3]
            for n, m in model.named_modules():
                print(n)
                n1 = n.split('.')
                if len(n1)>2:
                    stage = n1[0][-1]
                    unit = int(n1[1])+1
                    op = n1[2]
                    print(stage,unit,op)
                    if op=='relu':
                         op = op+'1'
                    if op == 'downsample':
                         r='0000'
                         if len(n1)>3:
                             r =n1[3]
                         if r=='0':
                             op = 'conv1sc'
                         else:
                             op = 'sc'
        #
    #            if op == ''
                    n = 'stage'+stage+'_unit'+str(unit)+'_'+op
                    print(n)
                if n=='conv1':
                    self.conv1_init(n,m,param_dict)
                elif isinstance(m, nn.BatchNorm2d):
                    if n=='bn0':
                        self.bn_init('bn0', m, param_dict,aux_params)
                    else:
                        self.bn_init(n, m, param_dict,aux_params)
                elif isinstance(m, nn.Conv2d):
    
                    self.conv_init(n, m, param_dict)
                elif isinstance(m, nn.Linear):
                    self.fc_init(n, m, param_dict)
                elif isinstance(m, nn.PReLU):
                    if n=='prelu':
                        self.prelu_init('relu0', m, param_dict)
                    else:
    
                        self.prelu_init(n, m, param_dict)
     
     
            return model
     
        def bn_init(self, n, m, param_dict,aux_params):
            print(torch.FloatTensor(param_dict[n+'_gamma'].asnumpy()).size())
            if not (m.weight is None):
                m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_gamma'].asnumpy()))
                m.bias.data.copy_(torch.FloatTensor(param_dict[n+'_beta'].asnumpy()))
            m.running_mean.copy_(torch.FloatTensor(aux_params[n+'_moving_mean'].asnumpy()))
            m.running_var.copy_(torch.FloatTensor(aux_params[n+'_moving_var'].asnumpy()))
        def conv1_init(self, n, m, param_dict):
         # print('n = ', n)
            #$n = 'conv0'
            a = torch.FloatTensor(param_dict['conv0'+'_weight'].asnumpy())
            print(a.size())
            print(m.weight.size())
            m.weight.data.copy_(torch.FloatTensor(param_dict['conv0'+'_weight'].asnumpy()))
            
    
        def conv_init(self, n, m, param_dict):
         # print('n = ', n)
            a = torch.FloatTensor(param_dict[n+'_weight'].asnumpy())
            print(a.size(),n)
            print(m.weight.size())
            m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_weight'].asnumpy()))
            #if n in ['conv1_1', 'conv4_1', 'conv3_1', 'conv2_1']:
            #m.bias.data.copy_(torch.FloatTensor(param_dict[n + '_bias'].asnumpy()))
    
        def fc_init(self, n, m, param_dict):
            m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_weight'].asnumpy()))
            m.bias.data.copy_(torch.FloatTensor(param_dict[n+'_bias'].asnumpy()))
    
        def prelu_init(self, n, m, param_dict):
            print(torch.FloatTensor(param_dict[n + '_gamma'].asnumpy()).size())
            m.weight.data.copy_(torch.FloatTensor(param_dict[n + '_gamma'].asnumpy()))
    
    c = convert_model()
    r50  = ResNetFace(IRBlock, [3,4,14,3])#getattr(models, arch)()#ResNet(BasicBlock,[3,4,14,3])
    model = c.init_model(r50,arg_params,aux_params)
    #r50.load_state_dict(torch.load('./r50.pkl'))
    #exit(0)
    torch.save(model.state_dict(),'./r50.pkl')
    import torch.nn as nn
    import torch.utils.checkpoint as cp
    import mxnet as mx 
    import torch
    from  resnet import ResNetFace,IRBlock
    archs = ['iresnet50']
    mx_model = './model-r50-am-lfw/model'
    mx_epoch = 14
    
    _,arg_params, aux_params = mx.model.load_checkpoint(mx_model,mx_epoch)
    
    class convert_model(object):
    
        def init_model(self, model,param_dict,aux_params):
            # print(model)
            layer=[3,4,14,3]
            for n, m in model.named_modules():
                print(n)
                n1 = n.split('.')
                if len(n1)>2:
                    stage = n1[0][-1]
                    unit = int(n1[1])+1
                    op = n1[2]
                    print(stage,unit,op)
                    if op=='relu':
                         op = op+'1'
                    if op == 'downsample':
                         r='0000'
                         if len(n1)>3:
                             r =n1[3]
                         if r=='0':
                             op = 'conv1sc'
                         else:
                             op = 'sc'
        #
    #            if op == ''
                    n = 'stage'+stage+'_unit'+str(unit)+'_'+op
                    print(n)
                if n=='conv1':
                    self.conv1_init(n,m,param_dict)
                elif isinstance(m, nn.BatchNorm2d):
                    if n=='bn0':
                        self.bn_init('bn0', m, param_dict,aux_params)
                    else:
                        self.bn_init(n, m, param_dict,aux_params)
                elif isinstance(m, nn.Conv2d):
    
                    self.conv_init(n, m, param_dict)
                elif isinstance(m, nn.Linear):
                    self.fc_init(n, m, param_dict)
                elif isinstance(m, nn.PReLU):
                    if n=='prelu':
                        self.prelu_init('relu0', m, param_dict)
                    else:
    
                        self.prelu_init(n, m, param_dict)
     
     
            return model
     
        def bn_init(self, n, m, param_dict,aux_params):
            print(torch.FloatTensor(param_dict[n+'_gamma'].asnumpy()).size())
            if not (m.weight is None):
                m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_gamma'].asnumpy()))
                m.bias.data.copy_(torch.FloatTensor(param_dict[n+'_beta'].asnumpy()))
            m.running_mean.copy_(torch.FloatTensor(aux_params[n+'_moving_mean'].asnumpy()))
            m.running_var.copy_(torch.FloatTensor(aux_params[n+'_moving_var'].asnumpy()))
        def conv1_init(self, n, m, param_dict):
         # print('n = ', n)
            #$n = 'conv0'
            a = torch.FloatTensor(param_dict['conv0'+'_weight'].asnumpy())
            print(a.size())
            print(m.weight.size())
            m.weight.data.copy_(torch.FloatTensor(param_dict['conv0'+'_weight'].asnumpy()))
            
    
        def conv_init(self, n, m, param_dict):
         # print('n = ', n)
            a = torch.FloatTensor(param_dict[n+'_weight'].asnumpy())
            print(a.size(),n)
            print(m.weight.size())
            m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_weight'].asnumpy()))
            #if n in ['conv1_1', 'conv4_1', 'conv3_1', 'conv2_1']:
            #m.bias.data.copy_(torch.FloatTensor(param_dict[n + '_bias'].asnumpy()))
    
        def fc_init(self, n, m, param_dict):
            m.weight.data.copy_(torch.FloatTensor(param_dict[n+'_weight'].asnumpy()))
            m.bias.data.copy_(torch.FloatTensor(param_dict[n+'_bias'].asnumpy()))
    
        def prelu_init(self, n, m, param_dict):
            print(torch.FloatTensor(param_dict[n + '_gamma'].asnumpy()).size())
            m.weight.data.copy_(torch.FloatTensor(param_dict[n + '_gamma'].asnumpy()))
    
    c = convert_model()
    r50  = ResNetFace(IRBlock, [3,4,14,3])#getattr(models, arch)()#ResNet(BasicBlock,[3,4,14,3])
    model = c.init_model(r50,arg_params,aux_params)
    #r50.load_state_dict(torch.load('./r50.pkl'))
    #exit(0)
    torch.save(model.state_dict(),'./r50.pkl')
  • 相关阅读:
    JavaScript常用正則表達式
    详尽解析window.event对象
    DWR的类却无法在js里用
    javascript控制小数点精度
    49. Group Anagrams
    48. Rotate Image
    64. Minimum Path Sum
    63. Unique Paths II
    62. Unique Paths
    53. Maximum Subarray
  • 原文地址:https://www.cnblogs.com/SuckChen/p/12853955.html
Copyright © 2011-2022 走看看