zoukankan      html  css  js  c++  java
  • 凸包判交板子

    #define int long long
    int sgn(double x) {
        if(fabs(x) < eps)return 0;
        if(x < 0)return -1;
        else return 1;
    }
    
    struct Point {
        int x,y;
        Point() {}
        Point(int _x,int _y) {
            x = _x;
            y = _y;
        }
        Point operator -(const Point &b)const {
            return Point(x - b.x,y - b.y);
        }
        int operator ^(const Point &b)const {
            return x*b.y - y*b.x;
        }
        int operator *(const Point &b)const {
            return x*b.x + y*b.y;
        }
        friend int dis2(Point a) {
            return a.x*a.x+a.y*a.y;
        }
        friend bool operator<(const Point &a,const Point &b){
            if(fabs(a.y-b.y)<eps) return a.x<b.x;
            return a.y<b.y;
        }
    };
    typedef Point Vector;
    double Dot(Point A, Point B){return A.x*B.x+A.y*B.y;}//点积
    double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}//叉积
    double Length(Vector A){return sqrt(Dot(A,A));}//OA长
    double Angle(Point A,Point B){return acos(Dot(A,B)/Length(A)/Length(B));}//OA和OB的夹角
    //判断线段相交,不在端点相交
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
        double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
        return sgn(c1)*sgn(c2)<eps&&sgn(c3)*sgn(c4)<eps;
    }
    
    int graham(Point p[],int n,Point q[]){
         int top=1;
         sort(p,p+n);
         if(n==0) return 0;
         q[0]=p[0];
         if(n==1) return 1;
         q[1]=p[1];
         if(n==2) return 2;
         q[2]=p[2];
         for(int i=2;i<n;i++){
             while(top&&(Cross(q[top]-q[top-1],p[i]-q[top-1])<=0)) top--;
             q[++top]=p[i];
         }
         int len=top;
         q[++top]=p[n-2];
         for(int i=n-3;i>=0;i--){
             while(top!=len&&(Cross(q[top]-q[top-1],p[i]-q[top-1])<=0)) top--;
             q[++top]=p[i];
         }
         return top;
    }
    
    bool C_S(Point *ch1,int t1,Point *ch2,int t2)//判断凸包是否相交
    {
        double angle[1010],x;
        int i,j,k,m;
        if(t1==1)return true;
        if(t1==2)
        {
            for(i=0;i<t2;i++)
            {
                k=sgn(Cross(ch1[1]-ch1[0],ch2[i]-ch1[0]));
                if(k==0&&Dot(ch1[1]-ch1[0],ch2[i]-ch1[0])>0)
                {
                    if(Length(ch2[i]-ch1[0])<Length(ch1[1]-ch1[0]))break;
                }
            }
            if(i<t2)return false;
            if(t2==2&&SegmentProperIntersection(ch1[0],ch1[1],ch2[0],ch2[1]))return false;
            return true;
        }
        angle[0]=0;
        for(i=2;i<t1;i++)
        angle[i-1]=Angle(ch1[1]-ch1[0],ch1[i]-ch1[0]);
        for(i=0;i<t2;i++)
        {
            j=sgn(Cross(ch1[1]-ch1[0],ch2[i]-ch1[0]));
            if(j<0||(j==0&&Dot(ch1[1]-ch1[0],ch2[i]-ch1[0])<0))continue;
            j=sgn(Cross(ch1[t1-1]-ch1[0],ch2[i]-ch1[0]));
            if(j>0||(j==0&&Dot(ch1[t1-1]-ch1[0],ch2[i]-ch1[0])<0))continue;
            x=Angle(ch1[1]-ch1[0],ch2[i]-ch1[0]);
            m=lower_bound(angle,angle+t1-1,x)-angle;
            if(m==0)j=0;
            else j=m-1;
            k=sgn(Cross(ch1[j+1]-ch2[i],ch1[j+2]-ch2[i]));
            if(k>=0)break;
        }
        if(i<t2)return false;
        return true;
    }
  • 相关阅读:
    四则运算02
    第三周学习进度条
    《构建之法》阅读笔记1
    第二周学习进度条
    四则运算01
    第八周进度条
    每日站立会日07,08
    每日站立会议06
    每日站立会议05
    每日站立会议04
  • 原文地址:https://www.cnblogs.com/Suiyue-Li/p/11274911.html
Copyright © 2011-2022 走看看