zoukankan      html  css  js  c++  java
  • POJ_3579_Median_(二分,查找第k大的值)

    描述


    http://poj.org/problem?id=3579

    给你一串数,共C(n,2)个差值(绝对值),求差值从大到小排序的中值,偶数向下取.

    Median
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5468   Accepted: 1762

    Description

    Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i j N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    Source

    分析


    可以先把数排序,然后下界0,上界a[n]-a[1],二分假定中值d,如果所有差值中大于等于d的小于等于N/2,说明d太大了.判断d是否可行时如果枚举差值就太慢了,可以对于每一个数x,找所有满足xi>=x+d(xi>x)的xi的个数,这里还是用二分,直接lower_bound即可.

    注意:

    1.差值共有N=C(n,2)=n*(n-1)/2而不是n.

    2.数据范围并不会超int.

     1 #include<cstdio>
     2 #include<algorithm>
     3 using std :: sort;
     4 using std :: lower_bound;
     5 
     6 const int maxn=100005;
     7 int n,N;
     8 int a[maxn];
     9 
    10 bool C(int d)
    11 {
    12     int cnt=0;
    13     for(int i=1;i<n;i++) cnt+=a+n-(lower_bound(a+i+1,a+n+1,a[i]+d)-1);
    14     return cnt<=N/2;
    15 }
    16 
    17 void solve()
    18 {
    19     sort(a+1,a+n+1);
    20     int l=0,r=a[n]-a[1];
    21     while(l<r)
    22     {
    23         int m=l+(r-l+1)/2;
    24         if(C(m)) r=m-1;
    25         else l=m;
    26     }
    27     printf("%d
    ",l);
    28 }
    29 
    30 void init()
    31 {
    32     while(scanf("%llu",&n)==1)
    33     {
    34         N=n*(n-1)/2;
    35         for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    36         solve();
    37     }
    38 }
    39 
    40 int main()
    41 {
    42     init();
    43     return 0;
    44 }
    View Code
  • 相关阅读:
    数组中出现次数超过一半的数字
    字符串的排列(important)
    #pragma mark指令的作用
    类的声明和实现
    OC比C中,新增的数据类型
    NSLog (Log信息的输出)
    C语言中文件相关操作
    static 及 extern
    C语言预处理命令
    结构体
  • 原文地址:https://www.cnblogs.com/Sunnie69/p/5423829.html
Copyright © 2011-2022 走看看