zoukankan      html  css  js  c++  java
  • POJ_2739_Sum_of_Consecutive_Prime_Numbers_(尺取法+素数表)

    描述


    http://poj.org/problem?id=2739

    多次询问,对于一个给定的n,求有多少组连续的素数,满足连续素数之和为n.

    Sum of Consecutive Prime Numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 22737   Accepted: 12432

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    Source

    分析


    尺取法.

    打个素数表,对于每一个n,尺取之.

    换了种尺取法的写法= =.

     1 #include<cstdio>
     2 
     3 const int maxn=10005;
     4 int p,n;
     5 int prime[maxn];
     6 bool is_prime[maxn];
     7 
     8 void get_prime()
     9 {
    10     for(int i=1;i<maxn;i++) is_prime[i]=true;
    11     is_prime[0]=is_prime[1]=false;
    12     p=0;
    13     for(int i=2;i<maxn;i++)
    14     {
    15         if(is_prime[i])
    16         {
    17             prime[++p]=i;
    18             for(int j=2*i;j<maxn;j+=i) is_prime[j]=false;
    19         }
    20     }
    21 }
    22 
    23 void solve()
    24 {
    25     int l=1,r=0,sum=0,ans=0;
    26     while(l<=p&&r<=p&&prime[l]<=n&&prime[r]<=n)
    27     {
    28         if(sum==n) { ans++; sum-=prime[l++]; }
    29         else if(sum>n) sum-=prime[l++];
    30         else sum+=prime[++r];
    31     }
    32     printf("%d
    ",ans);
    33 }
    34 
    35 void init()
    36 {
    37     get_prime();
    38     while(scanf("%d",&n)==1&&n!=0) solve();
    39 }
    40 
    41 int main()
    42 {
    43     freopen("sum.in","r",stdin);
    44     freopen("sum.out","w",stdout);
    45     init();
    46     fclose(stdin);
    47     fclose(stdout);
    48     return 0;
    49 }
    View Code
  • 相关阅读:
    android 4.0 中出错 java.lang.UnsupportedOperationException
    怎么确定你的CPU是否支持64位虚拟化
    宽度百分比单位的转换公式
    Test SRM Level Three: LargestCircle, Brute Force
    802.11(wifi)的MAC层功能
    zookeeper集群的python代码测试
    mysqldump 命令的使用
    xp硬盘安装Fedora14 过程记录及心得体会(fedora14 live版本680M 和fedora14 DVD版本3.2G的选择)
    ContentProvider的使用
    基于 Java 2 运行时安全模型的线程协作--转
  • 原文地址:https://www.cnblogs.com/Sunnie69/p/5424017.html
Copyright © 2011-2022 走看看