zoukankan      html  css  js  c++  java
  • POJ_3662_Telephone_Lines_(二分+最短路)

    描述


    http://poj.org/problem?id=3662

    给一张图,要将1与n连起来.可以有k条边免费,其他边自费,付费的值为所有自费边中最大的值.求最小付费.

    Telephone Lines
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5932   Accepted: 2152

    Description

    Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system.

    There are N (1 ≤ N ≤ 1,000) forlorn telephone poles conveniently numbered 1..N that are scattered around Farmer John's property; no cables connect any them. A total of P (1 ≤ P ≤ 10,000) pairs of poles can be connected by a cable; the rest are too far apart.

    The i-th cable can connect the two distinct poles Ai and Bi, with length Li (1 ≤ Li ≤ 1,000,000) units if used. The input data set never names any {Ai, Bi} pair more than once. Pole 1 is already connected to the phone system, and pole N is at the farm. Poles 1 and N need to be connected by a path of cables; the rest of the poles might be used or might not be used.

    As it turns out, the phone company is willing to provide Farmer John with K (0 ≤ K < N) lengths of cable for free. Beyond that he will have to pay a price equal to the length of the longest remaining cable he requires (each pair of poles is connected with a separate cable), or 0 if he does not need any additional cables.

    Determine the minimum amount that Farmer John must pay.

    Input

    * Line 1: Three space-separated integers: N, P, and K
    * Lines 2..P+1: Line i+1 contains the three space-separated integers: Ai, Bi, and Li

    Output

    * Line 1: A single integer, the minimum amount Farmer John can pay. If it is impossible to connect the farm to the phone company, print -1.

    Sample Input

    5 7 1
    1 2 5
    3 1 4
    2 4 8
    3 2 3
    5 2 9
    3 4 7
    4 5 6
    

    Sample Output

    4
    

    Source

    分析


    可以假定一个付费值m,所有<=m的都自己付费,>m的免费,然后使>m的边数a尽可能小,看是否可以使得a<=k.这里用二分即可.

    统计a的最小值时,我们考虑:边分为免费边和自费边,要让免费边数量尽可能小,就把免费边赋值为1,自费边赋值为0,跑最短路,最后d[n]就是最少经过的免费边数量a.

    另外,二分的标准如果是0~maxl的话就太大了,我们可以把每一条边的值存在f数组中,然后二分f[0]~f[p],这样会小很多.

    注意:

    1.如果自费最大费用(不用免费的了),还是不能成功,就输出-1.

    Dijkstra:

     1 #include<cstdio>
     2 #include<vector>
     3 #include<queue>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 const int maxn=1005,maxp=10005,INF=1<<27;
     8 struct node
     9 {
    10     int to,w;
    11     node(){}
    12     node(int a,int b) : to(a),w(b){}
    13     bool operator < (const node &a) const { return a.w>w; }
    14 };
    15 vector <node> g[maxn];
    16 int n,p,k;
    17 int d[maxn],f[maxp];
    18 
    19 bool Dijkstra(int m)
    20 {
    21     for(int i=1;i<=n;i++) d[i]=INF;
    22     d[1]=0;
    23     priority_queue <node> q;
    24     q.push(node(1,0));
    25     while(!q.empty())
    26     {
    27         int x=q.top().to;q.pop();
    28         for(int i=0;i<g[x].size();i++)
    29         {
    30             int y=g[x][i].to,dxy=g[x][i].w;
    31             dxy=dxy>m ? 1 : 0;
    32             if(d[y]>d[x]+dxy)
    33             {
    34                 d[y]=d[x]+dxy;
    35                 q.push(node(y,d[y]));
    36             }
    37         }
    38     }
    39     return (d[n]<=k);
    40 }
    41 
    42 void solve()
    43 {
    44     if(!Dijkstra(f[p])) { printf("-1
    "); return; }
    45     int l=0,r=p;
    46     while(l<r)
    47     {
    48         int m=l+(r-l)/2;
    49         if(Dijkstra(f[m])) r=m;
    50         else l=m+1;
    51     }
    52     printf("%d
    ",f[l]);
    53 }
    54 
    55 void init()
    56 {
    57     scanf("%d%d%d",&n,&p,&k);
    58     for(int i=1;i<=p;i++)
    59     {
    60         int a,b,c;
    61         scanf("%d%d%d",&a,&b,&c);
    62         g[a].push_back(node(b,c));
    63         g[b].push_back(node(a,c));
    64         f[i]=c;
    65     }
    66     sort(f+1,f+1+p);
    67 }
    68 
    69 int main()
    70 {
    71 #ifndef ONLINE_JUDGE
    72     freopen("phone.in","r",stdin);
    73     freopen("phone.out","w",stdout);
    74 #endif
    75     init();
    76     solve();
    77 #ifndef ONLINE_JUDGE
    78     fclose(stdin);
    79     fclose(stdout);
    80 #endif
    81     return 0;
    82 }
    View Code

    Spfa:

     1 #include<cstdio>
     2 #include<vector>
     3 #include<queue>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 const int maxn=1005,maxp=10005,INF=1<<27;
     8 struct node
     9 {
    10     int to,w;
    11     node(){}
    12     node(int a,int b) : to(a),w(b){}
    13 };
    14 vector <node> g[maxn];
    15 int n,p,k;
    16 int d[maxn],f[maxp];
    17 bool vis[maxn];
    18 
    19 bool Spfa(int m)
    20 {
    21     for(int i=1;i<=n;i++) { d[i]=INF; vis[i]=false; }
    22     d[1]=0; vis[1]=true;
    23     queue <int> q;
    24     q.push(1);
    25     while(!q.empty())
    26     {
    27         int x=q.front();
    28         q.pop();
    29         vis[x]=false;
    30         for(int i=0;i<g[x].size();i++)
    31         {
    32             int y=g[x][i].to,dxy=g[x][i].w;
    33             dxy=dxy>m ? 1 : 0;
    34             if(d[y]>d[x]+dxy)
    35             {
    36                 d[y]=d[x]+dxy;
    37                 if(!vis[y])
    38                 {
    39                     vis[y]=true;
    40                     q.push(y);
    41                 }
    42             }
    43         }
    44     }
    45     return (d[n]<=k);
    46 }
    47 
    48 void solve()
    49 {
    50     if(!Spfa(f[p])) { printf("-1
    "); return; }
    51     int l=0,r=p;
    52     while(l<r)
    53     {
    54         int m=l+(r-l)/2;
    55         if(Spfa(f[m])) r=m;
    56         else l=m+1;
    57     }
    58     printf("%d
    ",f[l]);
    59 }
    60 
    61 void init()
    62 {
    63     scanf("%d%d%d",&n,&p,&k);
    64     for(int i=1;i<=p;i++)
    65     {
    66         int a,b,c;
    67         scanf("%d%d%d",&a,&b,&c);
    68         g[a].push_back(node(b,c));
    69         g[b].push_back(node(a,c));
    70         f[i]=c;
    71     }
    72     sort(f+1,f+1+p);
    73 }
    74 
    75 int main()
    76 {
    77 #ifndef ONLINE_JUDGE
    78     freopen("phone.in","r",stdin);
    79     freopen("phone.out","w",stdout);
    80 #endif
    81     init();
    82     solve();
    83 #ifndef ONLINE_JUDGE
    84     fclose(stdin);
    85     fclose(stdout);
    86 #endif
    87     return 0;
    88 }
    View Code
  • 相关阅读:
    MFC半透明对话框
    关于.h .lib .dll的总结
    C# 调用导致堆栈不对称。原因可能是托管的 PInvoke 签名与非托管的目标签名不匹配
    LeetCode——011 Container With Most Water
    《Effective C++》——读书笔记
    《More Effective C++》——读书笔记
    Chrome插件推荐
    LeetCode——004-Median-of-Two-Sorted-Arrays
    《STL源码剖析》——第七、八章:仿函数与接配器
    《STL源码剖析》——第五、六:关联容器与算法
  • 原文地址:https://www.cnblogs.com/Sunnie69/p/5424340.html
Copyright © 2011-2022 走看看