zoukankan      html  css  js  c++  java
  • POJ_3176_Cow_Bowling_(数字三角形)_(动态规划)

    描述


    http://poj.org/problem?id=3176

    给出一个三角形,每个点可以走到它下面两个点,将所有经过的点的值加起来,问最大的和是多少.

    Cow Bowling
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 16826   Accepted: 11220

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:

              7
    

    3 8

    8 1 0

    2 7 4 4

    4 5 2 6 5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample:

              7
    
    *
    3 8
    *
    8 1 0
    *
    2 7 4 4
    *
    4 5 2 6 5
    The highest score is achievable by traversing the cows as shown above.

    Source

    分析


    记忆化搜索:

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 using std :: max;
     5 
     6 const int maxn=355;
     7 int a[maxn][maxn],f[maxn][maxn];
     8 int n;
     9 
    10 int dfs(int i,int j)
    11 {
    12     if(f[i][j]!=-1) return f[i][j];
    13     if(i==n) return f[i][j]=a[i][j];
    14     return f[i][j]=a[i][j]+max(dfs(i+1,j),dfs(i+1,j+1));
    15 }
    16 
    17 void init()
    18 {
    19     scanf("%d",&n);
    20     for(int i=1;i<=n;i++)
    21     {
    22         for(int j=1;j<=i;j++)
    23         {
    24             scanf("%d",&a[i][j]);
    25         }
    26     }
    27     memset(f,-1,sizeof(f));
    28 }
    29 
    30 int main()
    31 {
    32 #ifndef ONLINE_JUDGE
    33     freopen("cow.in","r",stdin);
    34     freopen("cow.out","w",stdout);
    35 #endif
    36     init();
    37     printf("%d
    ",dfs(1,1));
    38 #ifndef ONLINE_JUDGE
    39     fclose(stdin);
    40     fclose(stdout);
    41 #endif
    42     return 0;
    43 }
    View Code

    动态规划:

     1 #include<cstdio>
     2 #include<algorithm>
     3 using std :: max;
     4 
     5 const int maxn=355;
     6 int n;
     7 int a[maxn][maxn],f[maxn][maxn];
     8 
     9 void solve()
    10 {
    11     for(int i=n-1;i>=1;i--)
    12     {
    13         for(int j=1;j<=i;j++)
    14         {
    15             f[i][j]=max(f[i+1][j],f[i+1][j+1])+a[i][j];
    16         }
    17     }
    18     printf("%d
    ",f[1][1]);
    19 }
    20 
    21 void init()
    22 {
    23     scanf("%d",&n);
    24     for(int i=1;i<=n;i++)
    25     {
    26         for(int j=1;j<=i;j++)
    27         {
    28             scanf("%d",&a[i][j]);
    29         }
    30     }
    31     for(int j=1;j<=n;j++) f[n][j]=a[n][j];
    32 }
    33 
    34 int main()
    35 {
    36 #ifndef ONLINE_JUDGE
    37     freopen("cow.in","r",stdin);
    38     freopen("cow.out","w",stdout);
    39 #endif
    40     init();
    41     solve();
    42 #ifndef ONLINE_JUDGE
    43     fclose(stdin);
    44     fclose(stdout);
    45 #endif
    46     return 0;
    47 }
    View Code

     

  • 相关阅读:
    牛客小白赛23
    三分查找模板和例题
    链式前向星存图模板
    树形dp求解树的重心和例题
    P3915-树的分解-(dfs)
    P2119 魔法阵-(桶排序+前后缀和)
    小阳的贝壳-(差分+线段树+gcd)
    NOJ1370: [蓝桥杯2018初赛]测试次数-(dp)
    begin.lydsy 入门OJ题库:3611-3613:神炎皇、降雷皇、幻魔皇
    1797: [Noi2010]海拔
  • 原文地址:https://www.cnblogs.com/Sunnie69/p/5425155.html
Copyright © 2011-2022 走看看