zoukankan      html  css  js  c++  java
  • UVALive 7461 Separating Pebbles (计算几何)

    Separating Pebbles

    题目链接:

    http://acm.hust.edu.cn/vjudge/contest/127401#problem/H

    Description

    http://7xjob4.com1.z0.glb.clouddn.com/1e1638de1146450534631815cbf822c6

    Input

    The first line of the input contains an integer K (K ≤ 20) indicating the number of test cases. The first line of each test case consists of an integer N (N ≤ 250) indicating the number of pebbles. The next N lines each contains a triplet (x, y, c), where x and y represent the x and y coordinates (all integers, 0 ≤ x, y ≤ 150) of a pebble point, and c represents the type of pebble: ‘o’ denoted by ‘0’ and ‘+’ denoted by ‘1’.

    Output

    For each test case, output ‘1’ if Dr. Y can separate the pebbles with a single straight line; if not, output ‘0’.

    Sample Input

    2 5 1 2 0 2 1 0 4 3 1 5 4 1 6 3 1 4 1 2 0 2 1 0 1 1 1 2 2 1

    Sample Output

    1 0
    ##题意: 给出平面上的两类点,判断是否能画一条直线将两类点完全分割开来.
    ##题解: 枚举任意两点组成的直线, 除了在直线上的点以外,若其余点满足分居两侧的要求,那么我只要稍微旋转一下这条直线就能满足要求. 对直线上点的特殊考虑:当直线上有若干点时,如果出现两个'o'点中间夹一个'x'的情况是无法旋转的. 所以能旋转的条件是直线上不会出现两种类型的点间隔分布. 对重点的特殊考虑:如果有重点的话,特判可能会比较多,所以干脆一开始对所有点去重. 若有两个不同类型的点重叠,那么一定不能划分. (坑爹的是,题目的数据好像并没有重复点,在uDebug上跑类型不同的重点居然输出1). 不知不觉就打了5000B的代码,稍有点繁琐...
    ##代码: ``` cpp #include #include #include #include #include #include #include #include #include #include #include #define LL long long #define double long long #define eps 1e-8 #define maxn 300 #define mod 100000007 #define inf 0x3f3f3f3f #define mid(a,b) ((a+b)>>1) #define IN freopen("in.txt","r",stdin); using namespace std;

    struct Point{
    double x,y;
    int tp;
    Point(){}
    Point(double tx,double ty) {x=tx;y=ty;}
    bool operator<(const Point& b)const
    {
    if(x==b.x) return y<b.y;
    return x<b.x;
    }
    }tmp[maxn];

    vector p;

    struct Line{
    Point a,b;
    };

    int sign(double x)
    {
    if(!x) return 0;
    return x<0? -1:1;
    }

    double xmul(Point p0,Point p1,Point p2)
    {return (p1.x-p0.x)(p2.y-p0.y)-(p2.x-p0.x)(p1.y-p0.y);}

    bool is_inline(Point a, Point b, Point c) {
    return xmul(a,b,c) == 0;
    }

    /判两点在线段异侧,点在线段上返回0/
    int opposite_side(Point p1,Point p2,Line l)
    {
    return sign(xmul(p1,l.a,l.b)*xmul(p2,l.a,l.b))<0;
    }

    int same_side(Point p1,Point p2,Line l)
    {
    return sign(xmul(p1,l.a,l.b)*xmul(p2,l.a,l.b))>0;
    }

    /判断两点是否重合/
    int equal_point(Point p1,Point p2)
    {
    return (sign(p1.x-p2.x)0)&&(sign(p1.y-p2.y)0);
    }

    int vis[200][200];

    int main(int argc, char const *argv[])
    {
    //IN;

    int t; cin >> t;
    while(t--)
    {
        int n; scanf("%d", &n);
        memset(vis, -1, sizeof(vis));
        p.clear(); p.push_back(Point(0,0));
        bool flag = 1;
        int m = 0;
        for(int i=1; i<=n; i++) {
            scanf("%lld %lld %d", &tmp[i].x, &tmp[i].y, &tmp[i].tp);
        }
        //sort(p+1, p+1+n);
    
        /*去重*/
        for(int i=1; i<=n; i++) {
            if(vis[tmp[i].x][tmp[i].y] == -1) {
                vis[tmp[i].x][tmp[i].y] = tmp[i].tp;
                p.push_back(tmp[i]);
                m++;
            } else {
                if(vis[tmp[i].x][tmp[i].y] != tmp[i].tp) {
                    flag = 0;
                    break;
                }
            }
        }
    
        if(!flag) {  /*如果有两类点重叠,无法划分*/
            printf("0
    ");
            continue;
        }
    
        vector<int> in;  /*在直线上的点*/
        vector<int> a;   /*A类点'o'*/
        vector<int> b;   /*B类点'x'*/
        for(int i=1; i<=m; i++) {
            for(int j=i+1; j<=m; j++) {
                flag = 1;
                Line l;  l.a = p[i]; l.b = p[j];
                a.clear(); b.clear(); in.clear();
                
                for(int k=1; k<=m; k++) {
                    if(is_inline(p[i], p[j], p[k])) {   /*在直线上*/
                        in.push_back(k);
                        continue;
                    }
                    if(p[k].tp == 0) {
                        if(a.empty()) {
                            a.push_back(k);
                            if(!b.empty()) {  
                                /*因为只能维护是否在同一边而不能具体到是左边还是右边,所以要判断集合中的第一个点是否违背条件,样例2可以说明这一点*/
                                if(same_side(p[k],p[b[0]],l)) {
                                    flag = 0;
                                    break;
                                }
                            }
                        } else {
                            if(opposite_side(p[a[0]],p[k],l)) {
                                flag = 0;
                                break;
                            }
                            else a.push_back(k);
                        }
                        continue;
                    }
                    if(p[k].tp == 1) {
                        if(b.empty()) {
                            b.push_back(k);
                            if(!a.empty()) {
                                if(same_side(p[k],p[a[0]],l)) {
                                    flag = 0;
                                    break;
                                }
                            }
                        } else {
                            if(opposite_side(p[b[0]],p[k],l)) {
                                flag = 0;
                                break;
                            }
                            else b.push_back(k);
                        }
                        continue;
                    }
                }
                if(!flag) continue;
    
                /*对直线上的点判断是否有"间隔出现"的情况*/
                sort(in.begin(), in.end());
                int sz = in.size();
                bool change = 0;
                int last = p[in[0]].tp;
                for(int k=1; k<sz; k++) {
                    if(p[in[k]].tp != last) {
                        if(!change) {
                            last = p[in[k]].tp;
                            change = 1;
                        }
                        else {
                            flag = 0;
                            break;
                        }
                    }
                }
    
                if(flag) {
                    //printf("%d %d
    ", i,j);
                    goto las;
                }
            }
        }
    
        las:
        if(flag) printf("1
    ");
        else printf("0
    ");
    }
    
    return 0;
    

    }

  • 相关阅读:
    114.114.114.114和8.8.8.8
    一台电脑双网卡同时上网
    eNSP模拟器
    路由器UPnP
    子网掩码
    网线水晶头制作
    AP (无线访问接入点(WirelessAccessPoint))
    筛选键
    注册表方法修改网络名称
    图片素材网址
  • 原文地址:https://www.cnblogs.com/Sunshine-tcf/p/5781693.html
Copyright © 2011-2022 走看看