使用库Pyhive
安装:pip install Pyhive -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
from pyhive import hive # or import hive conn = hive.Connection(host='****', port=****, username='****', database='****') cursor.execute(''SELECT * FROM my_awesome_data LIMIT 10'') for i in range(****): sql = "INSERT INTO **** VALUES ({},'username{}')".format(value, str(username)) cursor.execute(sql) # 下面是官网代码: from pyhive import presto # or import hive cursor = presto.connect('localhost').cursor() cursor.execute('SELECT * FROM my_awesome_data LIMIT 10') print(cursor.fetchone()) print(cursor.fetchall())
impyla
安装:
pip install Pyhive -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
from impala.dbapi import connect conn = connect(host ='****',port = ****) cursor = conn.cursor() cursor.execute('SELECT * FROM mytable LIMIT 100') print cursor.description # 打印结果集的schema results = cursor.fetchall()
impyla交互hive 与pandas
from pyhive import hive import pandas as pd def LinkHive(sql_select): connection = hive.Connection(host='localhost') cur = connection.cursor() cur.execute(sql_select) columns = [col[0] for col in cursor.description] result = [dict(zip(columns, row)) for row in cursor.fetchall()] Main = pd.DataFrame(result) Main.columns = columns return Main sql = "select * from 数据库.表名" df = LinkHive(sql)
或者
rom impala.dbapi import connect
from impala.util import as_pandas
conn = connect(host='10.161.20.11', port=21050)
cur = conn.cursor()
cur.execute('SHOW TABLES')
cur.execute('SELECT * FROM businfo')
data = as_pandas(cur)
print (data)
print (type(data))
Usage
Impyla implements the Python DB API v2.0 (PEP 249) database interface (refer to it for API details):
from impala.dbapi import connect
conn = connect(host='my.host.com', port=21050)
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable LIMIT 100')
print cursor.description # prints the result set's schema
results = cursor.fetchall()
The Cursor
object also exposes the iterator interface, which is buffered (controlled by cursor.arraysize
):
cursor.execute('SELECT * FROM mytable LIMIT 100')
for row in cursor:
process(row)
Furthermore the Cursor
object returns you information about the columns returned in the query. This is useful to export your data as a csv file.
import csv
cursor.execute('SELECT * FROM mytable LIMIT 100')
columns = [datum[0] for datum in cursor.description]
targetfile = '/tmp/foo.csv'
with open(targetfile, 'w', newline='') as outcsv:
writer = csv.writer(outcsv, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL, lineterminator='
')
writer.writerow(columns)
for row in cursor:
writer.writerow(row)
You can also get back a pandas DataFrame object
from impala.util import as_pandas
df = as_pandas(cur)
# carry df through scikit-learn, for example