zoukankan      html  css  js  c++  java
  • STDN: Scale-Transferrable Object Detection论文总结

     

    概述

    STDN是收录于CVPR 2018的一篇目标检测论文,提出STDN网络用于提升多尺度目标的检测效果。要点包括:(1)使用DenseNet-169作为基础网络提取特征;(2)提出Scale-transfer Layer,在几乎不增加参数量和计算量的情况下生成大尺度的feature map。

    STDN介绍

    Figure 1回顾了目标检测算法对feature map的利用情况:

    a)是只使用单一尺度的feature map进行检测,这种方法利用的特征层较少,检测效果一般,代表性的算法如Faster RCNN;

    b)是FPN的做法,将不同尺度的feature map自顶向下进行融合,并基于融合后的不同尺度的feature map分别进行检测,对小目标的检测效果提升明显,构建特征金字塔的方式可以充分利用多个层次的feature map信息,但是需要添加一些额外的网络层,增加了计算量和时间;

    c)是SSD算法的做法,对不同尺度的feature map分别检测,虽然浅层专用于小目标的目标检测,但是由于没有使用到高层的语义信息,所以对小目标的检测效果一般;

    d)是本文的做法,检测方式类似于SSD,但是通过基础网络DenseNet将高低层特征融合,因此可以达到类似FPN的效果。

    网络结构如下图所示,可以看做是SSD的一个改进版,将原SSD中基础网络VGG替换为DenseNet-169,通过DenseNet提取特征在最后一个Dense Block获得一系列9*9大小的feature map,然后通过Scale-transfer Module对feature map进行放大或缩小。最后分别对不同尺度的feature map做目标检测。

    各层的结构如表3所示,论文所用的DenseNet对原DenseNet的输入层进行了调整,具体为:将7*7卷积层(stride=2)和其后的3*3 max pooling层(stride=2stride=1stride=1)替换为3个3*3卷积层(stride=2)和1个2*2 mean pooling层(stride=2)。调整称为stem block。这样做提升了检测精度。

    文中提出Scale-Transferrable Module(STM)用于进行feature map的尺度变换,具体为:

    1)获取小feature map :mean pooling

    2)获取大feature map:Scale-Transfer LayerSTL)

    STL是利用多个通道的feature map来增大feature map尺寸,也就是压缩通道数增大map尺寸。

     

    以网络的最后一个预测层为例,DenseNet-169的输出维度为9*9*1664,经过一个4X的scale-transfer后变为36*36*104。整个过程是像素值周期排列的过程,在此次变换中r=4,变换后的第一个通道上一个r*r像素块的像素值相当于是原来前r*r个通道上1*1的像素值的重新排列。

    训练和损失函数

    Anchor Box设置尺度同SSD,aspect ratio同DSSD,负样本挖掘、数据扩增、损失函数等等都跟SSD没差。

    实验结果

    1)PASCAL VOC 2007

     

    STDN相比SSD提升较为明显,与DSSD也有的一拼,作者认为STDN比DSSD稍差的原因是DSSD的基础网络Residual-101网络参数具有压制力(Residual-10142M,而DenseNet-169只有14M)。

    2)COCO test-dev 2015

    见表4。可以看出对中小型目标的检测效果优于其他主流算法,IoU 0.5~0.95之间的目标检测效果也很不错,比Faster RCNN和R-FCN差(他们输入图像大,1000*600),比DSSD差(参数碾压),但是STDN不仅mAP高而且运行速度快(是DSSD的5倍多)。

    主流算法的精度、速度对比如下:

    可见,STDN的表现很好,速度非常快,而且精度高,输入图像小,在取得较高准确率的同时又兼顾了速度。例如STDN321和513两个模型相比于Faster-RCNN、YOLOv2、SSD、DSSD等,首先在正确率上已具有相同或者更高的水平,但是在速度上优势很大,特别是对于准确率较高的R-FCN和DSSD513简直是碾压。

    记:1.开头那个7*7改成3*3卷积的可以试试;2.这种方法用作上采样可以减少一定的计算量

  • 相关阅读:
    Web API 强势入门指南
    毫秒必争,前端网页性能最佳实践
    Windbg Extension NetExt 使用指南 【3】 ---- 挖掘你想要的数据 Managed Heap
    Windbg Extension NetExt 使用指南 【2】 ---- NetExt 的基本命令介绍
    Windbg Extension NetExt 使用指南 【1】 ---- NetExt 介绍
    WCF : 修复 Security settings for this service require Windows Authentication but it is not enabled for the IIS application that hosts this service 问题
    透过WinDBG的视角看String
    Microsoft Azure Web Sites应用与实践【4】—— Microsoft Azure网站的“后门”
    企业IT管理员IE11升级指南【17】—— F12 开发者工具
    WCF : 如何将NetTcpBinding寄宿在IIS7上
  • 原文地址:https://www.cnblogs.com/SuperLab/p/9879347.html
Copyright © 2011-2022 走看看