zoukankan      html  css  js  c++  java
  • OpenJ_Bailian

    http://bailian.openjudge.cn/practice/4152?lang=en_US

    题解 :dp[i][j]代表前i个字符加j个加号可以得到的最小值,于是dp[i+k[j+1]可以由dp[i][j]得到。具体转移方程看代码。

       然后数字是50位所以要用高精度类。自己写了一个

    坑:高精度的<和+有bug。一开始的更新方法也在乱写

    #define _CRT_SECURE_NO_WARNINGS
    #include<stdio.h>
    #include<stdlib.h>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    const int N = 50 + 5;
    
    typedef long long ll;
    struct BigInterger {
        static const int BASE = 1e8;
        static const int WIDTH = 8;
        vector<int> s;
        BigInterger(long long num = 0) { *this = num; }
        BigInterger operator =(long long num) {
            s.clear();
            do {
                s.push_back(num%BASE);
                num /= BASE;
            } while (num > 0);//num==0
            return *this;
        }
        BigInterger operator =(const string& str) {
            s.clear();
            int x, len = (str.length() - 1) / WIDTH + 1;//len==width
            for (int i = 0; i < len; i++) {
                int end = str.length() - i*WIDTH;
                int start = max(0, end - WIDTH);
                sscanf(str.substr(start, end - start).c_str(), "%d", &x);
                s.push_back(x);
            }
            return *this;
        }
    
    
        BigInterger operator +(const BigInterger& b)const {
            BigInterger c;
            c.s.clear();
            for (int i = 0, g = 0;; i++) {
                if (g == 0 && i >= max(s.size(), b.s.size()))break;
                int x = g;
                if (i < s.size())x += s[i];
                if (i < b.s.size()) x += b.s[i];
                c.s.push_back(x%BASE);
                g = x / BASE;
            }
            return c;
        }
        BigInterger operator +=(const BigInterger& b) {
            *this = *this + b; return *this;
        }
    
        bool operator<(const BigInterger& b)const {
            if (s.size() != b.s.size()) return s.size() < b.s.size();
            for (int i = s.size() - 1; i >= 0; i--) {
                if (s[i] != b.s[i]) return s[i] < b.s[i];//Width 个数字一起比
            }
            return false;//==
        }
        bool operator>(const BigInterger &b)const { return b < *this; }
        bool operator<=(const BigInterger &b)const { return !(b < *this); }
        bool operator>=(const BigInterger &b)const { return !(*this < b); }
        bool operator!=(const BigInterger &b)const { return b < *this || *this<b; }
        bool operator==(const BigInterger &b)const { return!(b < *this) && !(*this<b); }
    };
    ostream& operator <<(ostream &out, const BigInterger& x) {
        out << x.s.back();
        for (int i = x.s.size() - 2; i >= 0; i--) {
            char buf[20];
            sprintf(buf, "%08d", x.s[i]);
            for (int j = 0; j < strlen(buf); j++)cout << buf[j];
        }
        return out;
    }
    istream&operator>>(istream &in, BigInterger&x) {
        string s;
        if (!(in >> s))return in;
        x = s;
        return in;
    }
    BigInterger dp[N][N];//前i个数加j个加号的最小值。
    int main() {
        int n; BigInterger s; string s1;
        string INF;
        for (int i = 1; i < 55; i++)INF += "1";
        while (cin >> n) {
            cin >> s1;
            int len = s1.length();
            s = s1;
            //if (n == 0) {cout << s<<endl; continue;}
            for (int i = 0; i <= len; i++)
                for (int j = 0; j <= n; j++) dp[i][j] = INF;
    
            for (int i = 1; i <= len; i++)
                for (int j = 0; j <= n; j++) {
                    if (j == 0) { dp[i][j] = s1.substr(0, i); }
                    else if (i < j + 1) dp[i][j] = INF;
                    else {
                        for (int k = j; k <= i - 1; k++) {
                            BigInterger x;
                            x = s1.substr(k, i - k);
                            dp[i][j] = min(dp[i][j], dp[k][j - 1] + x);
                        }
                    }
                    //cout <<i<<j<<' '<< dp[i][j] << endl;
                }
            cout << dp[len][n] << endl;
    
        }
    }
    成功的路并不拥挤,因为大部分人都在颓(笑)
  • 相关阅读:
    常用开发技巧系列(三)
    快速排序OC、Swift版源码
    一步一步学习SignalR进行实时通信_8_案例2
    一步一步学习SignalR进行实时通信_7_非代理
    一步一步学习SignalR进行实时通信_6_案例
    一步一步学习SignalR进行实时通信_5_Hub
    一步一步学习SignalR进行实时通信_4_Hub
    一步一步学习SignalR进行实时通信_3_通过CORS解决跨域
    一步一步学习SignalR进行实时通信_2_Persistent Connections
    一步一步学习SignalR进行实时通信_1_简单介绍
  • 原文地址:https://www.cnblogs.com/SuuT/p/8744529.html
Copyright © 2011-2022 走看看