链接:https://www.nowcoder.com/acm/contest/104/G
来源:牛客网
题目描述
Given n positive integers
, your task is to calculate the product of these integers, The answer is less than 
题解:直接python高精度
坑:c++高精度会T
紫书上的高精度乘法改不来
t = int(input()) p=1 for i in range(t): s = int(input()) p=p*s print (p)
附:紫书上的高精度乘法:
#include<bits/stdc++.h> #define lson (rt<<1) #define rson (rt<<1|1) #define mp make_pair #define fi first #define se second using namespace std; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; const int MAXN=1111; const int MOD=(int)1e9+7; struct BigInt{ const static int Base=(int)1e9; const static int Len=9; vector<int>a; BigInt(){a={0};} BigInt(const char *str,const int &l,const int &r){ for(int i=r-Len+1;;i-=Len){ int tmp=0; if(i<l){ for(int j=l;j<i+Len;j++)tmp=tmp*10+str[j]-'0'; a.push_back(tmp); break; } for(int j=i;j<i+Len;j++)tmp=tmp*10+str[j]-'0'; a.push_back(tmp); } while(a.back()==0&&a.size()>1)a.pop_back(); } BigInt operator *(const BigInt &b)const{ BigInt res; res.a.resize(a.size()+b.a.size()); for(int i=0;i<(int)a.size();i++){ int up=0; for(int j=0;j<(int)b.a.size();j++){ ll tmp=1ll*a[i]*b.a[j]+res.a[i+j]+up; res.a[i+j]=tmp%Base; up=tmp/Base; } if(up!=0)res.a[i+(int)b.a.size()]=up; } while(res.a.back()==0&&res.a.size()>1)res.a.pop_back(); return res; } void display(){ printf("%d",a.back()); for(int i=(int)a.size()-2;i>=0;i--)printf("%09d",a[i]); } }ans; char str[100005]; int main() { int n; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%s",str); if(i==1)ans=BigInt(str,0,strlen(str)-1); else { ans=ans*BigInt(str,0,strlen(str)-1); } } ans.display(); return 0; } /* 20 1 12345678912345678912 */
以及某丧心病狂的高精度
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:1024000000,1024000000") #define mem(a,b) memset((a),(b),sizeof(a)) #define MP make_pair #define pb push_back #define fi first #define se second #define sz(x) (int)x.size() #define all(x) x.begin(),x.end() using namespace std; #define _GLIBCXX_PERMIT_BACKWARD_HASH #include <ext/hash_map> using namespace __gnu_cxx; struct str_hash{size_t operator()(const string& str)const{return __stl_hash_string(str.c_str());}}; typedef long long ll; typedef unsigned long long ull; #define PII pair<int,int> #define PLL pair<ll,ll> #define PDD pair<double,double> const int INF=0x3f3f3f3f; const ll LLINF=0x3f3f3f3f3f3f3f3f; const double PI=acos(-1.0); const double eps=1e-8; const int MAX=2e6+10; const ll mod=1e9+7; const int DIGIT=9; const int DEPTH=1000000000; const int MAXN=12000; typedef ll bignum_t[MAXN+1]; ll read(bignum_t a,istream&is=cin) { char buf[MAXN*DIGIT+1],ch; ll i,j; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>buf))return 0; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for(;!a[a[0]]&&a[0]>1;a[0]--); return 1; } void write(const bignum_t a,ostream&os=cout) { ll i,j ; for(os<<a[i=a[0]],i--;i;i--) os<<setw(DIGIT)<<setfill('0')<<a[i]; } ll comp(const bignum_t a,const bignum_t b) { ll i ; if(a[0]!=b[0]) return a[0]-b[0]; for(i=a[0];i;i--) if(a[i]!=b[i]) return a[i]-b[i]; return 0 ; } ll comp(const bignum_t a,const ll b) { ll c[12]={1}; for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c); } ll comp(const bignum_t a,const ll c,const ll d,const bignum_t b) { ll i,t=0,O=-DEPTH*2; if(b[0]-a[0]<d&&c) return 1 ; for(i=b[0];i>d;i--) { t=t*DEPTH+a[i-d]*c-b[i]; if(t>0)return 1; if(t<O)return 0; } for(i=d;i;i--) { t=t*DEPTH-b[i]; if(t>0)return 1; if(t<O)return 0; } return t>0 ; } void add(bignum_t a,const bignum_t b) { ll i ; for(i=1;i<=b[0];i++) if((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if(b[0]>=a[0]) a[0]=b[0]; else for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0); } void add(bignum_t a,const ll b) { ll i=1; for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); } void sub(bignum_t a,const bignum_t b) { ll i; for(i=1;i<=b[0];i++) if((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH; for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--); for(;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const ll b) { ll i=1; for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const bignum_t b,const ll c,const ll d) { ll i,O=b[0]+d; for(i=1+d;i<=O;i++) if((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ; for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t c,const bignum_t a,const bignum_t b) { ll i,j; memset((void*)c,0,sizeof(bignum_t)); for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for(j=1;j<=b[0];j++) if((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH; for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--); } void mul(bignum_t a,const ll b) { ll i; for(a[1]*=b,i=2;i<=a[0];i++) { a[i]*=b ; if(a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH; } for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t b,const bignum_t a,const ll c,const ll d) { ll i; memset((void*)b,0,sizeof(bignum_t)); for(b[0]=a[0]+d,i=d+1;i<=b[0];i++) if((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ; for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for(;!b[b[0]]&&b[0]>1;b[0]--); } void div(bignum_t c,bignum_t a,const bignum_t b) { ll h,l,m,i; memset((void*)c,0,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ; for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1; else l=m; for(;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1; } void div(bignum_t a,const ll b,ll&c) { ll i; for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for(;!a[a[0]]&&a[0]>1;a[0]--); } void sqrt(bignum_t b,bignum_t a) { ll h,l,m,i; memset((void*)b,0,sizeof(bignum_t)); for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--) for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1; else l=m; for(;!b[b[0]]&&b[0]>1;b[0]--); for(i=1;i<=b[0];b[i++]>>=1); } ll length(const bignum_t a) { ll t,ret; for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1; } ll digit(const bignum_t a,const ll b) { ll i,ret; for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret%10; } ll zeronum(const bignum_t a) { ll ret,t; for(ret=0;!a[ret+1];ret++); for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++); return ret; } void comp(ll*a,const ll l,const ll h,const ll d) { ll i,j,t; for(i=l;i<=h;i++) for(t=i,j=2;t>1;j++) while(!(t%j)) a[j]+=d,t/=j; } void convert(ll*a,const ll h,bignum_t b) { ll i,j,t=1; memset(b,0,sizeof(bignum_t)); for(b[0]=b[1]=1,i=2;i<=h;i++) if(a[i]) for(j=a[i];j;t*=i,j--) if(t*i>DEPTH) mul(b,t),t=1; mul(b,t); } #define SGN(x) ((x)>0?1:((x)<0?-1:0)) #define ABS(x) ((x)>0?(x):-(x)) ll read(bignum_t a,ll&sgn,istream&is=cin) { char str[MAXN*DIGIT+2],ch,*buf; ll i,j; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>str))return 0; buf=str,sgn=1; if(*buf=='-')sgn=-1,buf++; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for(;!a[a[0]]&&a[0]>1;a[0]--); if(a[0]==1&&!a[1])sgn=0; return 1; } struct bigint { bignum_t num; ll sgn; bigint(ll v){*this = v;} inline bigint() { memset(num,0,sizeof(bignum_t)); num[0]=1; sgn=0; } inline ll operator!() { return num[0]==1&&!num[1]; } inline bigint&operator=(const bigint&a) { memcpy(num,a.num,sizeof(bignum_t)); sgn=a.sgn; return*this; } inline bigint&operator=(const ll a) { memset(num,0,sizeof(bignum_t)); num[0]=1; sgn=SGN (a); add(num,sgn*a); return*this; } inline bigint&operator+=(const bigint&a) { if(sgn==a.sgn)add(num,a.num); else if(sgn&&a.sgn) { ll ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub (num,t); sgn=a.sgn; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0; } else if(!sgn) memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn; return*this; } inline bigint&operator+=(const ll a) { if(sgn*a>0)add(num,ABS(a)); else if(sgn&&a) { ll ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1; add(num,ABS (a)); sgn=-sgn; sub(num,t); } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn) sgn=SGN(a),add(num,ABS(a)); return*this; } inline bigint operator+(const bigint&a) { bigint ret; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn; ret+=a; return ret; } inline bigint operator+(const ll a) { bigint ret; memcpy(ret.num,num,sizeof (bignum_t)); ret.sgn=sgn; ret+=a; return ret; } inline bigint&operator-=(const bigint&a) { if(sgn*a.sgn<0)add(num,a.num); else if(sgn&&a.sgn) { ll ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub(num,t); sgn=-sgn; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0; } else if(!sgn)add(num,a.num),sgn=-a.sgn ; return*this ; } inline bigint&operator-=(const ll a) { if(sgn*a<0)add(num,ABS(a)); else if(sgn&&a) { ll ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1; add(num,ABS(a)); sub(num,t); sgn=-sgn; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0; } else if(!sgn)sgn=-SGN(a),add(num,ABS(a)); return*this ; } inline bigint operator-(const bigint&a) { bigint ret; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn; ret-=a; return ret; } inline bigint operator-(const ll a) { bigint ret; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn; ret-=a; return ret; } inline bigint&operator*=(const bigint&a) { bignum_t t; mul(t,num,a.num); memcpy(num,t,sizeof(bignum_t)); sgn*=a.sgn; return*this; } inline bigint&operator*=(const ll a) { mul(num,ABS(a)); sgn*=SGN(a); return*this; } inline bigint operator*(const bigint&a) { bigint ret; mul(ret.num,num,a.num); ret.sgn=sgn*a.sgn ; return ret; } inline bigint operator*(const ll a) { bigint ret; memcpy(ret.num,num,sizeof(bignum_t)); mul(ret.num,ABS(a)); ret.sgn=sgn*SGN(a); return ret; } inline bigint&operator/=(const bigint&a) { bignum_t t; div(t,num,a.num); memcpy (num,t,sizeof(bignum_t)); sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ; return*this; } inline bigint&operator/=(const ll a) { ll t; div(num,ABS(a),t); sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a); return*this; } inline bigint operator/(const bigint&a) { bigint ret; bignum_t t; memcpy(t,num,sizeof(bignum_t)); div(ret.num,t,a.num); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ; return ret; } inline bigint operator/(const ll a) { bigint ret; ll t; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a); return ret; } inline bigint&operator%=(const bigint&a) { bignum_t t; div(t,num,a.num); if(num[0]==1&&!num[1])sgn=0; return*this; } inline ll operator%=(const ll a) { ll t; div(num,ABS(a),t); memset(num,0,sizeof(bignum_t)); num[0]=1; add(num,t); return t; } inline bigint operator%(const bigint&a) { bigint ret; bignum_t t; memcpy(ret.num,num,sizeof(bignum_t)); div(t,ret.num,a.num); ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn; return ret; } inline ll operator%(const ll a) { bigint ret; ll t; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); memset(ret.num,0,sizeof(bignum_t)); ret.num[0]=1; add(ret.num,t); return t; } inline ll operator>(const bigint&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0); } inline ll operator>(const ll a) { return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0); } inline ll operator>=(const bigint&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0); } inline ll operator>=(const ll a) { return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0); } inline ll operator<(const bigint&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0); } inline ll operator<(const ll a) { return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0); } inline ll operator<=(const bigint&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0); } inline ll operator<=(const ll a) { return sgn<0?(a<0?comp(num,-a)>=0:1):(sgn>0?(a>0?comp(num,a)<=0:0):a>=0); } inline ll operator==(const bigint&a) { return(sgn==a.sgn)?!comp(num,a.num):0; } inline ll operator==(const ll a) { return(sgn*a>=0)?!comp(num,ABS(a)):0; } inline ll operator!=(const bigint&a) { return(sgn==a.sgn)?comp(num,a.num):1 ; } inline ll operator!=(const ll a) { return(sgn*a>=0)?comp(num,ABS(a)):1 ; } inline ll operator[](const ll a) { return digit(num,a); } friend inline istream&operator>>(istream&is,bigint&a) { read(a.num,a.sgn,is); return is; } friend inline ostream&operator<<(ostream&os,const bigint&a) { if(a.sgn<0) os<<'-'; write(a.num,os); return os; } friend inline bigint sqrt(const bigint&a) { bigint ret; bignum_t t; memcpy(t,a.num,sizeof(bignum_t)); sqrt(ret.num,t); ret.sgn=ret.num[0]!=1||ret.num[1]; return ret; } friend inline bigint sqrt(const bigint&a,bigint&b) { bigint ret; memcpy(b.num,a.num,sizeof(bignum_t)); sqrt(ret.num,b.num); ret.sgn=ret.num[0]!=1||ret.num[1]; b.sgn=b.num[0]!=1||ret.num[1]; return ret; } inline ll length() { return :: length(num); } inline ll zeronum() { return :: zeronum(num); } }; int main() { int n,i; bigint x,ans; while(~scanf("%d",&n)) { ans=1; for(i=0;i<n;i++) { cin>>x; ans=ans*x; } cout<<ans<<" "; } return 0; }