http://acm.hdu.edu.cn/showproblem.php?pid=1541
题意:给你一堆点,每个点右一个level,为其右下方所有点的数量之和,求各个level包含的点数。
题解:由于输入是有序的,每读进一对x,y 只需要考虑之前读入的数据就行了(之后的必定在其右上方)。如何计算他的level?只需从其X坐标开始往右所有的X坐标上的点数求和即可。然后再让自己的X坐标点数++。这是单点更新,求前缀和的操作,可以用树状数组。
坑:题目条件有误。
add函数里x<=maxn而不是n,具体原理应该是会处理到n外面吧
#define _CRT_SECURE_NO_WARNINGS #include<cstring> #include<cctype> #include<cstdlib> #include<iomanip> #include<cmath> #include<cstdio> #include<string> #include<climits> #include<stack> #include<ctime> #include<list> #include<set> #include<map> #include<queue> #include<vector> #include<sstream> #include<fstream> #include<iostream> #include<functional> #include<algorithm> #include<memory.h> //#define INF LONG_MAX #define eps 1e-6 #define pi acos(-1.0) #define e exp(1.0) #define rep(i,t,n) for(int i =(t);i<=(n);++i) #define per(i,n,t) for(int i =(n);i>=(t);--i) #define mp make_pair #define pb push_back #define mmm(a,b) memset(a,b,sizeof(a)) //std::ios::sync_with_stdio(false); using namespace std; typedef long long ll; typedef unsigned long long ull; void smain(); #define ONLINE_JUDGE int main() { //ios::sync_with_stdio(false); #ifndef ONLINE_JUDGE freopen("C:\Users\SuuTT\Desktop\test\in.txt", "r", stdin); freopen("C:\Users\SuuTT\Desktop\test\out.txt", "w", stdout); //ifstream in; //string filename; //getline(cin, filename,' '); //in.open(filename); long _begin_time = clock(); #endif smain(); #ifndef ONLINE_JUDGE long _end_time = clock(); printf("time = %ld ms.", _end_time - _begin_time); #endif return 0; } int dir[4][2] = { 1,0,0,1,-1,0,0,-1 }; const int maxn = 4e5 + 5; int n, m; ll a[maxn]; int d[maxn]; int level[maxn]; int lowbit(int x) { return x & (-x); } void add(int x, int v) {//a[x]+=v; while (x <= maxn) { d[x] += v; x += lowbit(x); } } int query(int x) { int res = 0; while (x) { res += d[x]; x -= lowbit(x); } return res; } struct node { int x, y; node(int x = 0, int y = 0) :x(x), y(y) {} }; void Run() { } void smain() { while (cin >> n) { mmm(d, 0); mmm(level, 0); rep(i, 1, n) { int x, y; cin >> x >> y; x++; level[query(x)]++; //cout << query(x) << endl; add(x, 1); } rep(i, 0, n - 1)cout << level[i] << endl; } }