zoukankan      html  css  js  c++  java
  • POJ 2365 Rope

    题目链接:

    http://poj.org/problem?id=2365

    Description

    Plotters have barberically hammered N nails into an innocent plane shape, so that one can see now only heads. Moreover, pursuing their mean object, they have hammered all the nails into the vertices of a convex polygon. After that they...it is awful... have roped off the nails, so that the shape felt upset (the rope was very thin). They've done it as it is shown in the figure. 
     
    Your task is to find out a length of the rope.

    Input

    There two numbers in the first line of the standard input: N — a number of nails (1 <= N <= 100), and a real number R — a radius of heads of nails. All the heads have the same radius. Further there are N lines, each of them contains a pair of real coordinates (separated by a space) of centers of nails. An absolute value of the coordinates doesn't exceed 100. The nails are described in a clockwise order starting from an arbitrary nail. Heads of different nails don't adjoin.

    Output

    The standard output should contain in its only line a real number with two digits precision (after a decimal point) — a length of the rope.

    Sample Input

    4 1
    0.0 0.0
    2.0 0.0
    2.0 2.0
    0.0 2.0
    

    Sample Output

    14.28

     Hint:

    题意:

    给你几个顶点,给你一个圆的半径,要求你求一下以这几个点围成的多边形的周长。

    题解:

    简单题,简单的数学问题。

    代码:

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm> 
    using namespace std;
    #define pi 4.0*atan(1.0)
    const int maxn = 100+10;
    double x[maxn],y[maxn];
    double dis(double x1,double y1,double x2,double y2)
    {
        return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
    }
    int main()
    {
        int n;
        double r;
        scanf("%d%lf",&n,&r);
        for(int i=0;i<n;i++)
            scanf("%lf%lf",&x[i],&y[i]);
        double sum=0;
        for(int i=1;i<n;i++)
            sum+=dis(x[i-1],y[i-1],x[i],y[i]);
        sum+=dis(x[0],y[0],x[n-1],y[n-1]);
        sum+=2*pi*r;
        printf("%.2lf
    ",sum);
    }
    
  • 相关阅读:
    洛谷P1446/BZOJ1004 Cards Burnside引理+01背包
    HDU-4676 Sum Of Gcd 莫队+欧拉函数
    HDU-5378 概率DP
    HDU-5628 Clarke and math-狄利克雷卷积+快速幂
    容斥原理+补集转化+MinMax容斥
    2019牛客暑期多校训练营(第九场)A.The power of Fibonacci
    斐波那契额数列的性质
    莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
    广义Fibonacci数列找循环节 学习笔记
    苗条的生成树 Slim Span--洛谷
  • 原文地址:https://www.cnblogs.com/TAT1122/p/5781477.html
Copyright © 2011-2022 走看看