zoukankan      html  css  js  c++  java
  • HDU 5904 LCIS

    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5904

    Problem Description
    Alex has two sequences a1,a2,...,an and b1,b2,...,bm. He wants find a longest common subsequence that consists of consecutive values in increasing order.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains two integers n and m (1n,m100000) -- the length of two sequences. The second line contains n integers: a1,a2,...,an (1ai106). The third line contains n integers: b1,b2,...,bm (1bi106).

    There are at most 1000 test cases and the sum of n and m does not exceed 2×106.
     
    Output
    For each test case, output the length of longest common subsequence that consists of consecutive values in increasing order.
     
    Sample Input
    3
    3 3
    1 2 3
    3 2 1
    10 5
    1 23 2 32 4 3 4 5 6 1
    1 2 3 4 5
    1 1
    2
    1
     
    Sample Output
    1
    5
    0
     
     
    Hint:
     
    官方题解:
    fif(i)是以aiai​​结尾的最大值, gig(i)是以bibi​​结尾的最大值. 答案就是maxaibjminfigjmaxai​​=bj​​​​{min(f(i),g(j)}. ff和gg随便dp一下就出来了.
     
    代码:
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm> 
    using namespace std;
    const int maxn = 1e6+10;
    #define inf 0x3f3f3f3f
    #define met(a,b) memset(a,b,sizeof(a))
    int num1[maxn],num2[maxn];
    int dp1[maxn],dp2[maxn];
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int n,m;
            met(dp1,0);met(dp2,0);
            scanf("%d%d",&n,&m);
            for(int i=0;i<n;i++)
            {
                scanf("%d",&num1[i]);
                dp1[num1[i]]=max(dp1[num1[i]],dp1[num1[i]-1]+1);
            }
            for(int i=0;i<m;i++)
            {
                scanf("%d",&num2[i]);
                dp2[num2[i]]=max(dp2[num2[i]],dp2[num2[i]-1]+1);
            }
            int ans=-inf;
            for(int i =0;i<n;i++)
                ans=max(ans,min(dp1[num1[i]],dp2[num1[i]]));
            printf("%d
    ",ans);
        }
    }
    
  • 相关阅读:
    Redis 主从复制与哨兵
    前端面试中让你困惑的闭包、原型、原型链究竟是什么?
    Chrome V8系列--浅析Chrome V8引擎中的垃圾回收机制和内存泄露优化策略[转]
    nodejs 制作项目目录树代码
    nprogress页面加载进度条
    koa2 从入门到进阶之路 (一)
    原生js 封装好了的ajax 带钩子版本 可封装成对象
    JS
    Javascript面向对象编程(三):非构造函数的继承
    Java 内部类
  • 原文地址:https://www.cnblogs.com/TAT1122/p/5910444.html
Copyright © 2011-2022 走看看