zoukankan      html  css  js  c++  java
  • BZOJ1036

    1036: [ZJOI2008]树的统计Count

    题目大意

    一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成

    一些操作:

    I. CHANGE u t : 把结点u的权值改为t

    II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值

    III. QSUM u v: 询问从点u到点v的路径上的节点的权值和

    注意:从点u到点v的路径上的节点包括u和v本身

    数据范围

    1n300000,0q200000

    解题思路

    树链剖分可以了解一下

    AC代码

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int INF = 100000;
    const int maxn = 300000;
    typedef long long LL;
    struct TREE {
        int l, r, Max, lazy;
        LL sum;
    }tree[maxn * 4 + 5];
    struct SPLIT {
        int size, dep, fa, son, id, top;
    }split[maxn + 5];
    int rid[maxn + 5], w[maxn + 5];
    vector<int>E[maxn + 5];
    int cnt;
    //线段树
    void Build(int L, int R, int x) {
        tree[x].l = L; tree[x].r = R, tree[x].lazy = 0, tree[x].Max = -INF; 
        if(L == R) {
            tree[x].Max = w[rid[L]];
            tree[x].sum = (LL)w[rid[L]];
            tree[x].lazy = 0;
            return ;
        }
        int mid = (L + R) / 2;
        Build(L, mid, x * 2);
        Build(mid + 1, R, x * 2 + 1);
        tree[x].sum = tree[x * 2].sum + tree[x * 2 + 1].sum;
        tree[x].Max = max(tree[x * 2].Max, tree[x * 2 + 1].Max);
    }
    void PushDown(int x) {
        if(tree[x].lazy) {
            tree[x * 2].lazy = tree[x].lazy;
            tree[x * 2 + 1].lazy = tree[x].lazy;
            tree[x * 2].sum = (LL)(tree[x * 2].r - tree[x * 2].l + 1) * (LL)tree[x].lazy;
            tree[x * 2 + 1].sum = (LL)(tree[x * 2 + 1].r - tree[x * 2 + 1].l + 1) * (LL)tree[x].lazy;
            tree[x].lazy = 0;
        }
    }
    LL QuerySum(int L, int R, int x) {
        if(L <= tree[x].l && tree[x].r <= R)return tree[x].sum;
        PushDown(x);
        int mid = (tree[x].l + tree[x].r) / 2;
        LL res = 0;
        if(L <= mid)res += QuerySum(L, R, x * 2);
        if(R > mid)res += QuerySum(L, R, x * 2 + 1);
        return res;
    }
    int QueryMax(int L, int R, int x) {
        if(L <= tree[x].l && tree[x].r <= R)return tree[x].Max;
        PushDown(x);
        int mid = (tree[x].l + tree[x].r) / 2;
        int Max = -INF;
        if(L <= mid)Max = max(Max, QueryMax(L, R, x * 2));
        if(R > mid)Max = max(Max, QueryMax(L, R, x * 2 + 1));
        return Max;
    }
    void Update(int L, int R, int num, int x) {
        if(L <= tree[x].l && tree[x].r <= R) {
            tree[x].sum = (LL)(tree[x].r - tree[x].l + 1) * num;
            tree[x].Max = num;
            tree[x].lazy = num;
            return ;
        }
        PushDown(x);
        int mid = (tree[x].l + tree[x].r) / 2;
        if(L <= mid)Update(L, R, num, x * 2);
        if(R > mid)Update(L, R, num, x * 2 + 1);
        tree[x].sum = tree[x * 2].sum + tree[x * 2 + 1].sum;
        tree[x].Max = max(tree[x * 2].Max, tree[x * 2 + 1].Max);
    }
    //处理出dep(深度),fa(父结点),size(子树大小),son(重结点)
    void Dfs1(int u, int father, int depth) {
        split[u].dep = depth;
        split[u].fa = father;
        split[u].size = 1;
        for(int i = 0; i < E[u].size(); i++) {
            int v = E[u][i];
            if(v != split[u].fa) {
                Dfs1(v, u, depth + 1);
                split[u].size += split[v].size;
                //如果没有被访问或者该节点子树更大,更新重结点
                if(split[u].son == -1 || split[v].size > split[split[u].son].size)split[u].son = v;
            }
        }
    }
    //处理处,top(每条重链的顶端结点),id(每个结点剖分的编号,也就是Dfs的执行顺序),rid(该编号对应的结点)
    void Dfs2(int u, int sta) {
        split[u].top = sta;
        split[u].id = cnt;
        rid[cnt] = u;
        cnt++;
        if(split[u].son == -1)return ;//叶子结点
        Dfs2(split[u].son, sta);//找出一条连续的重链
        for(int i = 0; i < E[u].size(); i++) {
            int v = E[u][i];
            if(v != split[u].son && v != split[u].fa)Dfs2(v, v);//v不是重结点且不是父结点,重新从v开始找重链
        }
    
    }
    //类似LCA
    LL QueryPathSum(int x, int y) {
        LL res = 0;
        int fx = split[x].top, fy = split[y].top;
        while(fx != fy) {//判断是否在同一条重链上
            if(split[fx].dep >= split[fy].dep) {
                res += QuerySum(split[fx].id, split[x].id, 1);
                x = split[fx].fa;//走轻边
            }
            else {
                res += QuerySum(split[fy].id, split[y].id, 1);
                y = split[fy].fa;
            }
            fx = split[x].top, fy = split[y].top;
        }
        if(split[x].id < split[y].id)res += QuerySum(split[x].id, split[y].id, 1);
        else res += QuerySum(split[y].id, split[x].id, 1);
        return res;
    }
    int QueryPathMax(int x, int y) {
        int Max = -INF;
        int fx = split[x].top, fy = split[y].top;
        while(fx != fy) {
            if(split[fx].dep >= split[fy].dep) {
                Max = max(Max, QueryMax(split[fx].id, split[x].id, 1));
                x = split[fx].fa;
            }
            else {
                Max = max(Max, QueryMax(split[fy].id, split[y].id, 1));
                y = split[fy].fa;
            }
            fx = split[x].top, fy = split[y].top;
        }
        if(split[x].id < split[y].id)Max = max(Max, QueryMax(split[x].id, split[y].id, 1));
        else Max = max(Max, QueryMax(split[y].id, split[x].id, 1));
        return Max;
    }
    void UpdatePath(int x, int y, int z) {
        int fx = split[x].fa, fy = split[y].fa;
        while(fx != fy) {
            if(split[fx].dep >= split[fy].dep) {
                Update(split[fx].id, split[x].id, z, 1);
                x = split[fx].fa;
            }
            else {
                Update(split[fy].id, split[y].id, z, 1);
                y = split[fy].id;
            }
            fx = split[x].top, fy = split[y].top;
        }
        if(split[x].id <= split[y].id)Update(split[x].id, split[y].id, z, 1);
        else Update(split[y].id, split[x].id, z, 1);
    }
    int n, q;
    char s[10];
    int main() {
        scanf("%d", &n);
        for(int i = 1; i < n; i++) {
            int u, v; scanf("%d%d", &u, &v);
            E[u].push_back(v);
            E[v].push_back(u);
        }
        for(int i = 1; i <= n; i++)scanf("%d", &w[i]);
        for(int i = 1; i <= n; i++)split[i].son = -1;
        cnt = 1, Dfs1(1, -1, 1); Dfs2(1, 1);
        Build(1, n, 1);
        scanf("%d", &q);
        for(int i = 1; i <= q; i++) {
            int x, y;
            scanf("%s%d%d", s, &x, &y);
            if(s[1] == 'M')printf("%d
    ", QueryPathMax(x, y));
            else if(s[1] == 'S')printf("%lld
    ", QueryPathSum(x, y));
            else UpdatePath(x, x, y);
        }
        return 0;
    }
  • 相关阅读:
    C语言 va_start 宏
    C语言 strcat_s 函数
    C语言 strcat 函数
    C语言 memcpy_s 函数
    C语言 memcpy 函数
    C语言 strcpy_s 函数
    C语言 strcpy 函数
    C语言 sizeof 函数
    c++实现扫雷游戏 初学
    .Net vs .Net Core,我该如何选择?看这一篇文章就够了
  • 原文地址:https://www.cnblogs.com/TRDD/p/9813503.html
Copyright © 2011-2022 走看看