zoukankan      html  css  js  c++  java
  • 基于马尔科夫链的产品评估预测

    马尔可夫链

    1、建立转移概率矩阵:

      马尔可夫链是一种时间离散、状态离散、带有记忆功能情况的随机过程,是预测中常用到的一种数学模型。如果数据的本身的每一时刻的状态仅仅取决于紧接在他前面的随机变量的所处状态,而与这之前的状态无关,这就是马尔可夫链的“无后效性”。

    经过了解本文的销量对于时间序列敏感性不高,具有“无后效性”的特点,因此可以根据唯品历史以来的销量进行其预测,可以得到下一次档期每个商品的销售状态。

    为了准确的计算整个目标系统的转移概率矩阵是马尔可夫链预测方法最常用到也是最基础的内容,一般是经常是使用统计估算法,将其方法总结如下:

      假设我们所关注的序列片段存在状态的个数为个,即状态空间,将看作为转移频数生成的概率矩阵。第行,第行元素在这个转移频数矩阵的值除以全部元素和得到的值定义为“转移概率”,用字母来表示,既有:

     

      由状态经一步转到状态也可以用此公式来表示。因为稳定性好是频率的一个特点,所以如果很大的时候,我们可以把频率等价的看成是概率,因而可以用它来估算转移概率。实际写法上为了方便转移频率用符号来表示,并称之为“转移概率”,一步转移概率也相应的表示为:

     

    2、对离散型数列进行“马氏性”检验:

      通常情况下选用离散型序列的马尔可夫链来对变量具有随机性的序列进行“马氏性”检验,检验常用统计量。

      设研究的序列状态个数为,用表示转移频数概率矩阵,把的各个列之和去除以的全部元素之和,就会得到“边际概率”,用字母表示,其中:

     

    很大时统计量:

     

      它将服从自由度为分布,现在给定显著性水平为,经查表可得到的值(或者在excel表里面利用公式chiinv(, )计算得到)。如果,则拒绝零假设,可以认为序列具备“马氏性”,反之,则这个序列不能当作马尔可夫链来对待。

    假设某一款商品的销量是如下所示:

    825058101

    66

    39

    50

    45

    96

    38

    15

    14

    22

    63

    22

    63

    80

    42

    43

    104

    45

    20

    7

    3

    本文设定不同的销售量有不同的状态,即:

    范围

    状态

    <20

    滞销

    20<=and<40

    平销

    40<=and<60

    热销

    >60

    畅销

    由此可以得到上述商品的转移过程的:

     

    滞销

    平销

    热销

    畅销

    滞销

    2

    1

    0

    0

    平销

    2

    0

    1

    1

    热销

    0

    1

    2

    2

    畅销

    0

    2

    2

    1

    则该商品的为:

    滞销

    平销

    热销

    畅销

    4/18

    4/18

    5/18

    5/18

    则该商品的为:

     

    滞销

    平销

    热销

    畅销

    滞销

    0.67

    0.33

    0.00

    0.00

    平销

    0.50

    0.00

    0.25

    0.25

    热销

    0.00

    0.20

    0.40

    0.40

    畅销

    0.00

    0.40

    0.40

    0.20

    将上述结果代入公式:

     

    根据卡方分布的数据比较大小:

     

      该商品的卡方值为:大于0.1显著水平下的,所以该商品是通过“马氏性”检验的,因此该商品的转移概率矩阵为:

     

    滞销

    平销

    热销

    畅销

    滞销

    0.6139

    0.2211

    0.0825

    0.0825

    平销

    0.335

    0.315

    0.2

    0.15

    热销

    0.1

    0.24

    0.37

    0.29

    畅销

    0.2

    0.16

    0.34

    0.3

    该表格表示为:

    (1)原来产品为滞销状态,下一次则有61.39%的概率还是滞销状态,有22.11%的概率变为平销,有8.25%的概率变为热销,有8.25%的概率变为畅销;

    (2) 原来产品为平销状态,下一次则有33.50%的概率还是滞销状态,有31.50%的概率变为平销,有20.00%的概率变为热销,有15.00%的概率变为畅销;

    (3) 原来产品为热销状态,下一次则有10.00%的概率还是滞销状态,有24.00%的概率变为平销,有37.00%的概率变为热销,有29.00%的概率变为畅销;

    (4) 原来产品为热销状态,下一次则有20.00%的概率还是滞销状态,有16.00%的概率变为平销,有34.00%的概率变为热销,有30.00%的概率变为畅销。

    -----------------------------------我是分割线-------------------------------

    但是但是,这只是其中一个商品的预估

    本店商品的其中一个

    本店差不多有1700商品

    怎么办怎么办?

    首先将数据储存出来

    本文用python读取数据

    步骤1:excel表格的数据插入进去啊,这里是读取表格

    from openpyxl import load_workbook
    1 if __name__ == '__main__':
    2 
    3     ##这里是打开excel将数据储存到数组里面
    4     wb = load_workbook(filename=r'C:UsersAdministratorDesktopdata.xlsx')  ##读取路径
    5     ws = wb.get_sheet_by_name("Sheet1")  ##读取名字为Sheet1的sheet表
    6     info_data_id = []
    7     info_data_sales = []

     步骤2:表格读取:

     1 2     for row_A in range(2, 1693):  ## 遍历第2行到1692行
     3         id = ws.cell(row=row_A, column=1).value  ## 遍历第2行到1692行,第1列
     4         info_data_id.append(id)
     5     for row_num_BtoU in range(2, len(info_data_id) + 2):  ## 遍历第2行到1692行
     6         row_empty = []  ##建立一个空数组作为临时储存地,每次换行就被清空
     7         for i in range(2, 22):  ## 遍历第2行到1692行,第2到21列
     8             data = ws.cell(row=row_num_BtoU, column=i).value
     9             if data == None:
    10                 pass
    11             else:
    12                 row_empty.append(data)  ##将单元格信息储存进去
    13         info_data_sales.append(row_empty)  ##row_empty每次储存完2到21列后压给info_data_sales,然后row_empty被清空

     重点是建立了一个空的row_empty = []可以临时储存每一行的数据,等到下一次循环就被清空

    表格数据样式如下:

    一共1692行22列应该,反正没数

     步骤3:计算p.j

     1 ##这里是计算pj的
     2     info_pj = []
     3     for j in range(0, len(info_data_sales)):
     4         pj_zhixiao = 0
     5         pj_pingxiao = 0
     6         pj_rexiao = 0
     7         number = 0
     8         pj_empty = []
     9         for k in range(0, len(info_data_sales[j])):
    10             number = number + 1
    11             if info_data_sales[j][k] < 10:
    12                 pj_zhixiao = pj_zhixiao + 1
    13             elif info_data_sales[j][k] >= 10 and info_data_sales[j][k] < 30:
    14                 pj_pingxiao = pj_pingxiao + 1
    15             elif info_data_sales[j][k] >= 30:
    16                 pj_rexiao = pj_rexiao + 1
    17         chance_zhixiao = pj_zhixiao / number
    18         chance_pingxiao = pj_pingxiao / number
    19         chance_rexiao = pj_rexiao / number
    20         pj_empty.append(chance_zhixiao)
    21         pj_empty.append(chance_pingxiao)
    22         pj_empty.append(chance_rexiao)
    23         info_pj.append(pj_empty)  ##得到了pj初始概率

    遍历数组info_data_sales的每一个元素,根据我审定的判断来计算各个状态的出现概率:

    范围

    状态

    <10

    滞销

    10<=and<30

    平销

    >30

    热销

     步骤4:计算pij和fij:

     1  ##这里是计算fij和pij的
     2     info_fij = []
     3     info_pij = []
     4     for j in range(0, len(info_data_sales)):
     5         fij_zz = 0
     6         fij_zp = 0
     7         fij_zr = 0
     8         fij_pz = 0
     9         fij_pp = 0
    10         fij_pr = 0
    11         fij_rz = 0
    12         fij_rp = 0
    13         fij_rr = 0
    14         fij_first = []
    15         fij_second = []
    16         fij_third = []
    17         fij_empty = []
    18         pij_first = []
    19         pij_second = []
    20         pij_third = []
    21         pij_empty = []
    22 
    23         for k in range(0, len(info_data_sales[j])):
    24             if k + 1 > len(info_data_sales[j]) - 1:
    25                 pass
    26             else:
    27                 if info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] < 10:
    28                     fij_zz = fij_zz + 1
    29                 elif info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
    30                     fij_zp = fij_zp + 1
    31                 elif info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] >= 30:
    32                     fij_zr = fij_zr + 1
    33                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] < 10:
    34                     fij_pz = fij_pz + 1
    35                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
    36                     fij_pp = fij_pp + 1
    37                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] >= 30:
    38                     fij_pr = fij_pr + 1
    39                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] < 10:
    40                     fij_rz = fij_rz + 1
    41                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
    42                     fij_rp = fij_rp + 1
    43                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] >= 30:
    44                     fij_rr = fij_rr + 1
    45 
    46         ##这里计算fij
    47         if fij_zz + fij_zp + fij_zr == 0:
    48             fij_zz = 1
    49         if fij_pz + fij_pp + fij_pr == 0:
    50             fij_pp = 1
    51         if fij_rz + fij_rp + fij_rr == 0:
    52             fij_rr = 1
    53         fij_first.append(fij_zz)
    54         fij_first.append(fij_zp)
    55         fij_first.append(fij_zr)
    56         fij_second.append(fij_pz)
    57         fij_second.append(fij_pp)
    58         fij_second.append(fij_pr)
    59         fij_third.append(fij_rz)
    60         fij_third.append(fij_rp)
    61         fij_third.append(fij_rr)
    62         fij_empty.append(fij_first)
    63         fij_empty.append(fij_second)
    64         fij_empty.append(fij_third)
    65         info_fij.append(fij_empty)
    66         # print(info_fij)
    67 
    68         ##这里计算pij
    69         pij_first.append(fij_zz / (fij_zz + fij_zp + fij_zr))
    70         pij_first.append(fij_zp / (fij_zz + fij_zp + fij_zr))
    71         pij_first.append(fij_zr / (fij_zz + fij_zp + fij_zr))
    72         pij_second.append(fij_pz / (fij_pz + fij_pp + fij_pr))
    73         pij_second.append(fij_pp / (fij_pz + fij_pp + fij_pr))
    74         pij_second.append(fij_pr / (fij_pz + fij_pp + fij_pr))
    75         pij_third.append(fij_rz / (fij_rz + fij_rp + fij_rr))
    76         pij_third.append(fij_rp / (fij_rz + fij_rp + fij_rr))
    77         pij_third.append(fij_rr / (fij_rz + fij_rp + fij_rr))
    78 
    79         pij_empty.append(pij_first)
    80         pij_empty.append(pij_second)
    81         pij_empty.append(pij_third)
    82         info_pij.append(pij_empty)

    先是统计各个状态出现的概率

    再压入数组里面

    步骤5:判断马氏性

    什么数据又有了,那么就可以用公式计算了:

    代码如下:

     1   ##马氏性判断
     2     info_judge = []
     3     for m in range(0, len(info_pij)):
     4         sum = 0
     5         for n in range(0, len(info_pij[m])):
     6             sum_1 = 0
     7             sum_2 = 0
     8             sum_3 = 0
     9             if info_fij[m][n][0] == 0 or info_pij[m][n][0] == 0 or info_pj[m][0] == 0:
    10                 sum_1 = 0
    11             else:
    12                 sum_1 = info_fij[m][n][0] * abs(math.log(info_pij[m][n][0] / info_pj[m][0], math.e))
    13             if info_fij[m][n][1] == 0 or info_pij[m][n][1] == 0 or info_pj[m][1] == 0:
    14                 sum_2 = 0
    15             else:
    16                 sum_2 = info_fij[m][n][1] * abs(math.log(info_pij[m][n][1] / info_pj[m][1], math.e))
    17             if info_fij[m][n][2] == 0 or info_pij[m][n][2] == 0 or info_pj[m][2] == 0:
    18                 sum_3 = 0
    19             else:
    20                 sum_3 = info_fij[m][n][2] * abs(math.log(info_pij[m][n][2] / info_pj[m][2], math.e))
    21 
    22             sum = sum + 2 * (sum_1 + sum_2 + sum_3)
    23         info_judge.append(sum)

    不要忘记了

    import math

    由于我的显著性非常不明显

    所以用了0.2的显著性判断:

    1     info_result = []
    2     for a in info_judge:
    3         if a > 5.988617:
    4             info_result.append("具有马氏性")
    5         else:
    6             info_result.append("")

     步骤6:压回excel表格就行了

    这里用到的是

    import xlsxwriter
     1 first = ['是否具有马氏性']
     2     workbook = xlsxwriter.Workbook('C:\Users\Administrator\Desktop\data1.xlsx')
     3     worksheet = workbook.add_worksheet()  # 创建一个工作表对象
     4     font = workbook.add_format(
     5         {'border': 1, 'align': 'center', 'font_size': 11, 'font_name': '微软雅黑'})  ##字体居中,11号,微软雅黑,给一般的信息用的
     6     worksheet.write(0, 1, '是否具有马氏性')
     7     worksheet.write(0, 0, '货号', font)
     8     worksheet.write(0, 2, '原状态是', font)
     9     worksheet.write(0, 3, '滞销', font)
    10     worksheet.write(0, 4, '平销', font)
    11     worksheet.write(0, 5, '热销', font)

    步骤7:记得利用矩阵计算啊,python自带的矩阵运算是:

    import numpy as np

     1 for x in range(0, len(info_result)):
     2         worksheet.write(x + 1, 1, info_result[x], font)  ##写入马氏性判断结果
     3         worksheet.write(x + 1, 0, info_data_id[x], font)  ##写入商品货号
     4         matrix_a = info_pij[x]  ##单独拿出第一个数组
     5         matrix_c = np.array(matrix_a)  ##将数组转化为矩阵
     6         matrix = matrix_c * matrix_c  ##矩阵相乘
     7         row = 3
     8         if info_data_sales[x][len(info_data_sales[x]) - 1] < 10:
     9             worksheet.write(x + 1, 2, "滞销", font)
    10             for y in matrix[0]:
    11                 worksheet.write(x + 1, row, y, font)
    12                 row = row + 1
    13         if info_data_sales[x][len(info_data_sales[x]) - 1] >= 10 and info_data_sales[x][
    14                     len(info_data_sales[x]) - 1] < 30:
    15             worksheet.write(x + 1, 2, "平销", font)
    16             for y in matrix[1]:
    17                 worksheet.write(x + 1, row, y, font)
    18                 row = row + 1
    19         if info_data_sales[x][len(info_data_sales[x]) - 1] >= 30:
    20             worksheet.write(x + 1, 2, "热销", font)
    21             for y in matrix[2]:
    22                 worksheet.write(x + 1, row, y, font)
    23                 row = row + 1
    24     workbook.close()

     最后做个好学生,不要忘记关掉excel表格

    workbook.close()

     得到效果图如下啊啊啊啊:

    最后附上全部代码:

    python

    Markov.py

      1 # -*- coding:utf-8 -*-
      2 from openpyxl import Workbook
      3 from openpyxl import load_workbook
      4 import math
      5 import xlsxwriter
      6 import numpy as np
      7 
      8 if __name__ == '__main__':
      9 
     10     ##这里是打开excel将数据储存到数组里面
     11     wb = load_workbook(filename=r'C:UsersAdministratorDesktopdata.xlsx')  ##读取路径
     12     ws = wb.get_sheet_by_name("Sheet1")  ##读取名字为Sheet1的sheet表
     13     info_data_id = []
     14     info_data_sales = []
     15 
     16     a = 0
     17     for row_A in range(2, 1693):  ## 遍历第2行到1692行
     18         id = ws.cell(row=row_A, column=1).value  ## 遍历第2行到1692行,第1列
     19         info_data_id.append(id)
     20     for row_num_BtoU in range(2, len(info_data_id) + 2):  ## 遍历第2行到1692行
     21         row_empty = []  ##建立一个空数组作为临时储存地,每次换行就被清空
     22         for i in range(2, 22):  ## 遍历第2行到1692行,第2到21列
     23             data = ws.cell(row=row_num_BtoU, column=i).value
     24             if data == None:
     25                 pass
     26             else:
     27                 row_empty.append(data)  ##将单元格信息储存进去
     28         info_data_sales.append(row_empty)  ##row_empty每次储存完2到21列后压给info_data_sales,然后row_empty被清空
     29 
     30     ##这里是计算pj的
     31     info_pj = []
     32     for j in range(0, len(info_data_sales)):
     33         pj_zhixiao = 0
     34         pj_pingxiao = 0
     35         pj_rexiao = 0
     36         number = 0
     37         pj_empty = []
     38         for k in range(0, len(info_data_sales[j])):
     39             number = number + 1
     40             if info_data_sales[j][k] < 10:
     41                 pj_zhixiao = pj_zhixiao + 1
     42             elif info_data_sales[j][k] >= 10 and info_data_sales[j][k] < 30:
     43                 pj_pingxiao = pj_pingxiao + 1
     44             elif info_data_sales[j][k] >= 30:
     45                 pj_rexiao = pj_rexiao + 1
     46         chance_zhixiao = pj_zhixiao / number
     47         chance_pingxiao = pj_pingxiao / number
     48         chance_rexiao = pj_rexiao / number
     49         pj_empty.append(chance_zhixiao)
     50         pj_empty.append(chance_pingxiao)
     51         pj_empty.append(chance_rexiao)
     52         info_pj.append(pj_empty)  ##得到了pj初始概率
     53     ##这里是计算fij和pij的
     54     info_fij = []
     55     info_pij = []
     56     for j in range(0, len(info_data_sales)):
     57         fij_zz = 0
     58         fij_zp = 0
     59         fij_zr = 0
     60         fij_pz = 0
     61         fij_pp = 0
     62         fij_pr = 0
     63         fij_rz = 0
     64         fij_rp = 0
     65         fij_rr = 0
     66         fij_first = []
     67         fij_second = []
     68         fij_third = []
     69         fij_empty = []
     70         pij_first = []
     71         pij_second = []
     72         pij_third = []
     73         pij_empty = []
     74 
     75         for k in range(0, len(info_data_sales[j])):
     76             if k + 1 > len(info_data_sales[j]) - 1:
     77                 pass
     78             else:
     79                 if info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] < 10:
     80                     fij_zz = fij_zz + 1
     81                 elif info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
     82                     fij_zp = fij_zp + 1
     83                 elif info_data_sales[j][k] < 10 and info_data_sales[j][k + 1] >= 30:
     84                     fij_zr = fij_zr + 1
     85                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] < 10:
     86                     fij_pz = fij_pz + 1
     87                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
     88                     fij_pp = fij_pp + 1
     89                 elif info_data_sales[j][k] < 30 and info_data_sales[j][k + 1] >= 30:
     90                     fij_pr = fij_pr + 1
     91                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] < 10:
     92                     fij_rz = fij_rz + 1
     93                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] < 30 and info_data_sales[j][k + 1] >= 10:
     94                     fij_rp = fij_rp + 1
     95                 elif info_data_sales[j][k] >= 30 and info_data_sales[j][k + 1] >= 30:
     96                     fij_rr = fij_rr + 1
     97 
     98         ##这里计算fij
     99         if fij_zz + fij_zp + fij_zr == 0:
    100             fij_zz = 1
    101         if fij_pz + fij_pp + fij_pr == 0:
    102             fij_pp = 1
    103         if fij_rz + fij_rp + fij_rr == 0:
    104             fij_rr = 1
    105         fij_first.append(fij_zz)
    106         fij_first.append(fij_zp)
    107         fij_first.append(fij_zr)
    108         fij_second.append(fij_pz)
    109         fij_second.append(fij_pp)
    110         fij_second.append(fij_pr)
    111         fij_third.append(fij_rz)
    112         fij_third.append(fij_rp)
    113         fij_third.append(fij_rr)
    114         fij_empty.append(fij_first)
    115         fij_empty.append(fij_second)
    116         fij_empty.append(fij_third)
    117         info_fij.append(fij_empty)
    118         # print(info_fij)
    119 
    120         ##这里计算pij
    121         pij_first.append(fij_zz / (fij_zz + fij_zp + fij_zr))
    122         pij_first.append(fij_zp / (fij_zz + fij_zp + fij_zr))
    123         pij_first.append(fij_zr / (fij_zz + fij_zp + fij_zr))
    124         pij_second.append(fij_pz / (fij_pz + fij_pp + fij_pr))
    125         pij_second.append(fij_pp / (fij_pz + fij_pp + fij_pr))
    126         pij_second.append(fij_pr / (fij_pz + fij_pp + fij_pr))
    127         pij_third.append(fij_rz / (fij_rz + fij_rp + fij_rr))
    128         pij_third.append(fij_rp / (fij_rz + fij_rp + fij_rr))
    129         pij_third.append(fij_rr / (fij_rz + fij_rp + fij_rr))
    130 
    131         pij_empty.append(pij_first)
    132         pij_empty.append(pij_second)
    133         pij_empty.append(pij_third)
    134         info_pij.append(pij_empty)
    135     # print(len(info_pij))
    136 
    137     ##马氏性判断
    138     info_judge = []
    139     for m in range(0, len(info_pij)):
    140         sum = 0
    141         for n in range(0, len(info_pij[m])):
    142             sum_1 = 0
    143             sum_2 = 0
    144             sum_3 = 0
    145             if info_fij[m][n][0] == 0 or info_pij[m][n][0] == 0 or info_pj[m][0] == 0:
    146                 sum_1 = 0
    147             else:
    148                 sum_1 = info_fij[m][n][0] * abs(math.log(info_pij[m][n][0] / info_pj[m][0], math.e))
    149             if info_fij[m][n][1] == 0 or info_pij[m][n][1] == 0 or info_pj[m][1] == 0:
    150                 sum_2 = 0
    151             else:
    152                 sum_2 = info_fij[m][n][1] * abs(math.log(info_pij[m][n][1] / info_pj[m][1], math.e))
    153             if info_fij[m][n][2] == 0 or info_pij[m][n][2] == 0 or info_pj[m][2] == 0:
    154                 sum_3 = 0
    155             else:
    156                 sum_3 = info_fij[m][n][2] * abs(math.log(info_pij[m][n][2] / info_pj[m][2], math.e))
    157 
    158             sum = sum + 2 * (sum_1 + sum_2 + sum_3)
    159         info_judge.append(sum)
    160     # print(len(info_pij))
    161     # print(len(info_pj))
    162     # print(len(info_fij))
    163     # print(info_judge)
    164     # print(len(info_judge))
    165     info_result = []
    166     for a in info_judge:
    167         if a > 5.988617:
    168             info_result.append("具有马氏性")
    169         else:
    170             info_result.append("")
    171             # print(info_result)
    172             # print(info_pij[0])
    173 
    174             ##下面是计算一阶马尔可夫链预测,即矩阵的运算的方法
    175             # matrix_a = info_pij[0]
    176             # matrix_c = np.array(matrix_a)
    177             # matrix = matrix_c * matrix_c
    178             # print(matrix)
    179             # print(matrix_c)
    180             # print(len(info_pij))
    181             # print(len(info_data_sales))
    182             # print(info_data_sales[0])
    183             # if info_data_sales[0][len(info_data_sales[0]) - 1] < 10:
    184             # print(info_data_sales[0][len(info_data_sales[0]) - 1])
    185             # print('滞销')
    186             # print(matrix[1])
    187 
    188     ##下面是写入excel表格
    189     first = ['是否具有马氏性']
    190     workbook = xlsxwriter.Workbook('C:\Users\Administrator\Desktop\data1.xlsx')
    191     worksheet = workbook.add_worksheet()  # 创建一个工作表对象
    192     font = workbook.add_format(
    193         {'border': 1, 'align': 'center', 'font_size': 11, 'font_name': '微软雅黑'})  ##字体居中,11号,微软雅黑,给一般的信息用的
    194     worksheet.write(0, 1, '是否具有马氏性')
    195     worksheet.write(0, 0, '货号', font)
    196     worksheet.write(0, 2, '原状态是', font)
    197     worksheet.write(0, 3, '滞销', font)
    198     worksheet.write(0, 4, '平销', font)
    199     worksheet.write(0, 5, '热销', font)
    200     for x in range(0, len(info_result)):
    201         worksheet.write(x + 1, 1, info_result[x], font)  ##写入马氏性判断结果
    202         worksheet.write(x + 1, 0, info_data_id[x], font)  ##写入商品货号
    203         matrix_a = info_pij[x]  ##单独拿出第一个数组
    204         matrix_c = np.array(matrix_a)  ##将数组转化为矩阵
    205         matrix = matrix_c * matrix_c  ##矩阵相乘
    206         row = 3
    207         if info_data_sales[x][len(info_data_sales[x]) - 1] < 10:
    208             worksheet.write(x + 1, 2, "滞销", font)
    209             for y in matrix[0]:
    210                 worksheet.write(x + 1, row, y, font)
    211                 row = row + 1
    212         if info_data_sales[x][len(info_data_sales[x]) - 1] >= 10 and info_data_sales[x][
    213                     len(info_data_sales[x]) - 1] < 30:
    214             worksheet.write(x + 1, 2, "平销", font)
    215             for y in matrix[1]:
    216                 worksheet.write(x + 1, row, y, font)
    217                 row = row + 1
    218         if info_data_sales[x][len(info_data_sales[x]) - 1] >= 30:
    219             worksheet.write(x + 1, 2, "热销", font)
    220             for y in matrix[2]:
    221                 worksheet.write(x + 1, row, y, font)
    222                 row = row + 1
    223     workbook.close()
  • 相关阅读:
    flask-admin章节二:wtforms的使用以及在数据库场景中使用QuerySelectField代替SelectField
    flask-admin章节一:使用chartkick画报表
    flask-admin众博客概述
    python smtplib发送邮件遇到的认证问题
    python logging模块可能会令人困惑的地方
    Markdown
    SpringBoot-启动过程
    SpringBoot-目录
    AbstractQueuedSynchronizer
    ThreadLocal
  • 原文地址:https://www.cnblogs.com/TTyb/p/5692330.html
Copyright © 2011-2022 走看看