由于需要海量的进行聚类,所以将 k-means
算法自我封装成一个方便利用的库,可以直接调用得到最优的 k值
和 中心点
:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
# k-means算法
import numpy as np
from sklearn.cluster import KMeans
from sklearn import metrics
def calckmean(array, karr):
# array是一个二维数组
# X = [[1, 2, 3, 4], [5, 6, 7, 8], [3, 4, 5, 6]]
# k是待选取K值的数组
# karr = [2, 3, 4, 5, 8,...]
# 将原始数据由数组变成矩阵
x = np.array(array)
# 用来储存轮廓系数的数组
score = []
# 用来储存中心坐标点的数组
point = []
# 用来储存各个簇的坐标
coordinates = []
for k in karr:
kmeans_model = KMeans(n_clusters=k).fit(x)
# title = 'K = %s, 轮廓系数 = %.03f' % (k, metrics.silhouette_score(X, kmeans_model.labels))
# print(title)
# 获取中心点的坐标
counter_point = kmeans_model.cluster_centers_
# print("k=" + str(k) + "时的中心点为" + "
" + str(counter_point))
# 记录分数
# print(metrics.silhouette_score(x, kmeans_model.labels_,metric='euclidean'))
score.append("%.03f" % (metrics.silhouette_score(x, kmeans_model.labels_)))
# 记录中心坐标
point.append(counter_point)
# 将坐标属于哪个簇的标签储存到数组
# k = 3 : [0 0 0 0 1 1 1 1 1 2 2 2 2 2]
# k = 4 : [1 1 1 1 0 0 0 0 0 3 2 2 3 2]
coordinates.append(kmeans_model.labels_)
# 返回轮廓系数最大的k值中心坐标分簇坐标
maxscore = max(score, default=0)
for i in range(0, len(score)):
if maxscore == score[i]:
# 储存分簇坐标的数组
coordinate = []
for j in range(0, len(point[i])):
temp = []
for item in zip(coordinates[i], array):
if item[0] == j:
temp.append(item[1])
coordinate.append(temp)
# 得到的样式为k=3,每个簇点的坐标群
# coordinate = [[[7, 1], [8, 2], [9, 1], [7, 1], [9, 3]],
# [[5, 8], [6, 6], [5, 7], [5, 6], [6, 7]],
# [[1, 1], [2, 3], [3, 2], [1, 2]]]
return karr[i], point[i], coordinate
调用的时候直接可以:
from kmeans import *
测试数据:
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-
from kmeans import *
x1 = np.array([1, 2, 3, 1, 5, 6, 5])
x2 = np.array([1, 3, 2, 2, 8, 6, 7])
# a = [[1, 2, 3, 1, 5, 6, 5], [1, 3, 2, 2, 8, 6, 7], [3, 5, 9, 4, 7, 6, 1], [1, 5, 3, 4, 8, 6, 7], [5, 1, 2, 3, 6, 9, 4],[8, 4, 6, 2, 1, 6, 3]]
a = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
karr = [2, 3, 4, 5, 8]
# print(np.array(a))
# print(list(zip(x1, x2)))
k, point = calckmean(a, karr)
print("最好的可以分成" + str(k) + "个簇,中心点为" + "
" + str(point))