zoukankan      html  css  js  c++  java
  • POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 15767   Accepted: 4337

    Description

    The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively.
    What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.

    Input

    The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10100 and 2 <= L <= 106. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0.

    Output

    For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break.

    Sample Input

    143 10
    143 20
    667 20
    667 30
    2573 30
    2573 40
    0 0

    Sample Output

    GOOD
    BAD 11
    GOOD
    BAD 23
    GOOD
    BAD 31
    这个题最大的亮点就是利用千进制,100位只能这样。
    很有意思的推论,利用同余定理,记住原理吧,这个规律挺神奇的,所以数学还挺好玩的
        同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的表示:

    •      1)a≡a(modd)

    •      2)a≡b(modd)→b≡a(mod d)

    •      3)(a≡b(modd),b≡c(mod d))→a≡c(mod d)

    •      如果a≡x(modd),b≡m(mod d),则

    •      4)a+b≡x+m (mod d)

    •      5)a-b≡x-m(mod d)

    •      6)a*b≡x*m(mod d )

    •      

    应用:

    •    (a+b)%c=(a%c+b%c)%c;

    •    (a*b)%c=(a%c*b%c)%c;

    •    对于大数的求余,联想到进制转换时的方法,得到

    •    举例如下,设大数 m=1234,模n

    •    就等于((((1*10)%n+2%n)%n*10%n+3%n)%n*10%n+4%n)%n

    大数求余的简单模板:

    •    #include<stdio.h>//大数求余,其中n(除数)不是大数
    char a[1000];
    int main()
     int i,j,k,m,n;
    {
     while(scanf("%s%d",a,&n)!=EOF)
     {
      m=0;
      for(i=0;a[i]!='';i++)
       m=((m*10)%n+(a[i]-'0')%n)%n;
      printf("%d ",m);
     }
     return 0;
    }

    同时我是真的手残啊。。。小bug太多了。。真的是在写bug

     1 #include <cstdlib>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <algorithm>
     5 #include<iostream>
     6 #include <cmath>
     7 #include<string>
     8 #define ll long long 
     9 #define dscan(a) scanf("%d",&a)
    10 #define mem(a,b) memset(a,b,sizeof a)
    11 using namespace std;
    12 #define MAXL 1105
    13 #define Endl endl
    14 #define maxn 1000055
    15 inline ll read()
    16 {
    17     ll x=0,f=1;char ch=getchar();
    18     while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
    19     while(ch>='0'&&ch<='9') {x=10*x+ch-'0';ch=getchar();}
    20     return x*f;
    21 }
    22 int isp[maxn],p[maxn],cnt;
    23 void getp()
    24 {
    25     
    26     int cnt=0;
    27     for(int i=2;i<=maxn;++i)
    28     {
    29         if(!isp[i]) p[cnt++]=i;
    30         for(int j=0;j<cnt&&p[j]*i<=maxn;++j){
    31             isp[i*p[j]]=p[j];
    32             if(i%p[j]==0) break;
    33         }
    34     }
    35 }
    36 int num,nums,ks;
    37 int main()
    38 {
    39     string s;
    40     int n;
    41     getp();
    42     //for(int i=0;i<=10;++i) cout<<p[i]<<" ";
    43     while(cin>>s>>n&&(s[0]!='0'&&n!=0))
    44     {
    45         //cout<<s<<endl;
    46         int len=s.length();
    47         int i;
    48         int flag=1;
    49         for(i=0;p[i]<n;++i)
    50         {
    51             num=0;
    52             for(int j=0;j<len;j+=3)
    53             {
    54                nums=0;
    55                ks=1;
    56                for(int k=j;k<j+3&&k<len;k++)
    57                {
    58                    ks*=10;
    59                    nums=nums*10+s[k]-'0';
    60                }
    61                num=num*ks+nums;
    62                //cout<<"num="<<num<<endl;
    63                num%=p[i];
    64                //cout<<"num="<<num<<endl;
    65         }
    66         if(num==0) {printf("BAD %d
    ",p[i]);flag=0;break;}
    67         }
    68         if(flag) printf("GOOD
    ");
    69     }
    70     return 0;
    71 }
    View Code
  • 相关阅读:
    皮皮书屋要关掉了
    Java容器类接口:Iterator,Collection,Map
    Java容器类概述
    Linux Mint下安装JDK
    [zz]论程序员
    Java私有构造器
    List of Free Programming Books
    5种你未必知道的JavaScript和CSS交互的方法
    【HTTP】GET和POST的区别
    ASP.NET转换人民币大小金额
  • 原文地址:https://www.cnblogs.com/TYH-TYH/p/9379514.html
Copyright © 2011-2022 走看看