zoukankan      html  css  js  c++  java
  • [离散时间信号处理学习笔记] 10. z变换与LTI系统

    我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统。

    利用z变换得到LTI系统的单位脉冲响应

    对于用差分方程描述的LTI系统而言,z变换将十分有用。有如下形式的差分方程:

    $displaystyle{ y[n] = –sum_{k=1}^{N}left(frac{a_k}{a_0} ight)y[n-k]+sum_{k=0}^{M}left(frac{b_k}{a_0} ight)x[n-k] }$

    我们可以通过z变换得到上述式子的单位脉冲响应。

    等式两边进行z变换

    $egin{align*}
    Y(z)
    &=zleft{-sum_{k=1}^{N} left( frac{a_k}{a_0} ight)y[n-k]+sum_{k=0}^{M}left(frac{b_k}{a_0} ight)x[n-k] ight}\
    &=zleft{-sum_{k=1}^{N} left( frac{a_k}{a_0} ight)y[n-k] ight}+zleft{sum_{k=0}^{M}left(frac{b_k}{a_0} ight)x[n-k] ight}quad z linearity property\
    &=-sum_{k=1}^{N} left( frac{a_k}{a_0} ight)z^{-k}Y(z) + sum_{k=0}^{M}left(frac{b_k}{a_0} ight)z^{-k}X(z) quad z time shift property\
    end{align*}$

    整理后可以得到

    $Y(z)=left(frac{displaystyle{ sum_{k=0}^{M}b_kz^{-k} }}{displaystyle{sum_{k=1}^{N}a_kz^{-k}}} ight )X(z)$

    另外,我们知道LTI系统是通过卷积来定义的

    $displaystyle{ y[n] = h[n]*x[n] }$

    等式两边进行z变换,可以得到

    $Y(z) = H(z)X(z)$

    因此有

    $H(z) = frac{displaystyle{ sum_{k=0}^{M}b_kz^{-k} }}{displaystyle{sum_{k=1}^{N}a_kz^{-k}}}$

    我们对$H(z)$进行z逆变换即可得到单位脉冲响应$h[n]$。$H(z)$被称为系统函数

    因果LTI系统的一些z变换特性

    此外,我们这里讨论的差分方程是因果的,即有

    • 系统满足初始松弛条件,也就是说如果输入为$x[n]=0,n< 0$,有
      $y[-N] = y[-N+1]=cdotcdotcdot=y[-1]=0$
    • 因果LTI系统的单位脉冲响应满足$h[n]=0,n<0$,那么系统函数$H(z)$的收敛域呈现$|z|>R$。
  • 相关阅读:
    Roce ofed 环境搭建与测试
    Ubuntu 1804 搭建NFS服务器
    Redhat 8.0.0 安装与网络配置
    Centos 8.1 安装与网络配置
    SUSE 15.1 系统安装
    VSpare ESXi 7.0 基本使用(模板、iso、SRIOV)
    VSpare ESXi 7.0 服务器安装
    open SUSE leap 15.1 安装图解
    KVM虚拟机网卡连接网桥
    GitHub Action一键部署配置,值得拥有
  • 原文地址:https://www.cnblogs.com/TaigaCon/p/8325840.html
Copyright © 2011-2022 走看看