zoukankan      html  css  js  c++  java
  • WSS Process On Causal LTI System

    Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations

    $egin{align*}
    &Time-Domain  &:&R_{yy}( au) &= h( au)*h(- au)*R_{xx}( au)\
    &Frequency-Domain &:&S_{yy}(jomega) &= H(jomega)H^*(jomega)S_{xx}(jomega)
    end{align*}$

    The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(jomega)=1$,which means that its auto-correlation is $delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(jomega)$ in frequency-domain.

    image

    This can be summarized as the following equations

    $egin{align*}
    &Time-Domain  &:&R_{xx}( au) &= m_{xx}( au)*m_{xx}(- au)\
    &Frequency-Domain &:&S_{xx}(jomega) &= M_{xx}(jomega)M_{xx}^*(jomega)
    end{align*}$

    Now, to think of a system which is the cascade of the filter $m_{xx}( au)$ and $m_{xx}(- au)$.

    image

    The filter $m_{xx}( au)$ can be decomposed into the sum of an even part $m_e( au)$, and an odd part $m_o( au)$

    $m_{xx}( au) = m_e( au)+m_o( au)$

    where

    $egin{align*}
    m_e( au)&= frac{1}{2}(m_{xx}( au)+m_{xx}(- au))\
    m_o( au)&= frac{1}{2}(m_{xx}( au)-m_{xx}(- au))\
    end{align*}$

    If the filter $m_{xx}( au)$ is causal, in order that $m_{xx}( au)=0$ for $ au<0$, we require that

    $m_o( au) = left{egin{matrix}
    m_e( au), & au >0 \
    -m_e( au), & au<0
    end{matrix} ight. =sgn( au)m_e( au)$

    Then the causal impulse response may be written in terms of the even function alone

    $egin{align*}
    &m_{xx}( au) &= m_e( au)+sgn( au)m_e( au)\
    &m_{xx}(- au) &= m_e( au)-sgn( au)m_e( au)
    end{align*}$

    For example

    image

    In the frequency domain, the frequency response function $M_{xx}(jomega)$ can also be expressed in terms of the even function alone

    $egin{align*}
    M_{xx}(jomega) &= mathcal{F}Big{m_e( au)Big}+mathcal{F}Big{sgn( au)m_e( au)Big}\
    &= mathcal{F}Big{m_e( au)Big}+frac{1}{2pi}mathcal{F}Big{sgn( au)Big}otimes mathcal{F}Big{m_e( au)Big}qquad convolution theorem\
    &= M_e(jomega) + jleft[frac{1}{piomega}otimes M_e(jomega) ight]\
    &= M_e(jomega) + jwidehat{M}_e(jomega) qquad widehat{M}_e(jomega) means Hilbert Transform of M_e(jomega)
    end{align*}$

    The frequency response function $M_{xx}^*(jomega)$ can be derived with the same argument.

    $displaystyle{M_{xx}^*(jomega) = M_e(jomega) - jwidehat{M}_e(jomega)}$

    Thus

    $egin{align*}
    S_{xx}(jomega)&=M_{xx}(jomega)M_{xx}^*(jomega)\
    &=Big{M_e(jomega)+jwidehat{M}_e(jomega)Big}Big{M_e(jomega)-jwidehat{M}_e(jomega)Big}\
    &=M_e^2(jomega)+widehat{M}_e^2(jomega)
    end{align*}$

    Back to the WSS process, $S_{xx}(jomega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(jomega)+widehat{M}_e^2(jomega)$.

    1. $M_e^2(jomega)+widehat{M}_e^2(jomega)$ is real, because it is the sum of square
    2. $M_e^2(jomega)+widehat{M}_e^2(jomega)$ is non-negative, because it is the sum of square
    3. The first term is the square of FT of real even function, so that $M_e(jomega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(jomega)$. According to the Hilbert transform duality, $widehat{M}_e(jomega)$ is odd, which means that $widehat{M}_e^2(jomega)$ is even. With these understanding, it is evident that $M_e^2(jomega)+widehat{M}_e^2(jomega)$ is even.

    Reference :

    MIT Open course 2.161 Signal Processing: Continuous and Discrete: Determining a System's Causality from its Frequency Response

    Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering

  • 相关阅读:
    Python基于正则表达式实现文件内容替换的方法
    python数据处理实战
    python数据处理实战
    Python命令行参数解析模块getopt使用实例
    Python命令行参数解析模块getopt使用实例
    python命令行参数解析OptionParser类用法实例
    vim中权限不足时不用退出而强制保存
    C++11 STL算法简介
    每天一个linux命令(6) ar命令
    mysql++ Query
  • 原文地址:https://www.cnblogs.com/TaigaCon/p/9290423.html
Copyright © 2011-2022 走看看