zoukankan      html  css  js  c++  java
  • 一元多项式的乘法与加法运算

    设计函数分别求两个一元多项式的乘积与和。

    输入格式:

    输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。

    输出格式:

    输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0。

    输入样例:

    4 3 4 -5 2 6 1 -2 0
    3 5 20 -7 4 3 1

    输出样例:

    15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1
    5 20 -4 4 -5 2 9 1 -2 0

    代码实现:
    #include <stdio.h>
    #include <stdlib.h>
    typedef struct PolyNode *Polynomial;
    struct PolyNode {
    	int coef;
    	int expon;
    	Polynomial link;
    };
    void Attach(int c,int e,Polynomial *pRear) {
    	if(c==0){return;}
      Polynomial P;
    	P = (Polynomial)malloc(sizeof(struct PolyNode));
    	P->coef = c;
    	P->expon = e;
    	P->link = NULL;
    	(*pRear)->link = P;   //注意一定要加括号()
    	*pRear = P;
    }
    Polynomial ReadPoly() {
    	int N,c,e;
    	Polynomial P, t, Rear;
    	P = (Polynomial)malloc(sizeof(struct PolyNode));
    	P->link = NULL;
    	Rear = P;
    	scanf("%d",&N);
    	while (N--) {
    		scanf("%d %d", &c, &e);
    		if( c != 0) Attach(c,e,&Rear);
    	}
    	t = P;
    	P = P->link;
    	free(t);
    	return P;
    }
    int Compare(int a,int b) {
    	if (a>b) {
    		return 1;
    	}else if (a<b) {
    		return -1;
    	}
    	return 0;
    }
    Polynomial Add(Polynomial P1, Polynomial P2) {
    	Polynomial T1, T2, P,  rear, tempP;
    	int sum;
    	if (!P1 && !P2) { return NULL; }
    	T1 = P1;
    	T2 = P2;
    	P = (Polynomial)malloc(sizeof(struct PolyNode));
    	P->link = NULL;
    	rear = P;
    	while (T1 && T2) {
    		switch (Compare(T1->expon, T2->expon)) {
    		case 1:
    			Attach(T1->coef, T1->expon, &rear);
    			T1 = T1->link;
    			break;
    		case -1:
    			Attach(T2->coef, T2->expon, &rear);
    			T2 = T2->link;
    			break;
    		case 0:
    			sum = T1->coef + T2->coef;
    			if (sum) Attach(sum, T1->expon, &rear);
    			T1 = T1->link;
    			T2 = T2->link;
    			break;
    		}
    	}
    	for (; T1; T1 = T1->link) Attach(T1->coef, T1->expon, &rear);
    	for (; T2; T2 = T2->link) Attach(T2->coef, T2->expon, &rear);
    	rear->link = NULL;
    	tempP = P; 
    	P = P->link; 
    	free(tempP);
    	return P;
    }
    Polynomial Mult(Polynomial P1,Polynomial P2) {
    	Polynomial P, T1, T2, Rear,tempP,t;
    	int c, e;
    	if (!P1 || !P2) { return NULL; }
    	T1 = P1;
    	T2 = P2;
    	P = (Polynomial)malloc(sizeof(struct PolyNode));
    	P->link = NULL;
    	Rear = P;
    	while (T2) {
    		Attach(T1->coef*T2->coef, T1->expon + T2->expon, &Rear);
    		T2 = T2->link;
    	}
    	T1 = T1->link;
    	while (T1) {
    		T2 = P2;
    		Rear = P;
    		while (T2) {
    			c = T1->coef * T2->coef;
    			e = T1->expon + T2->expon;
    			while (Rear->link && Rear->link->expon > e) {
    				Rear = Rear->link;
    			}
    			if (Rear->link && Rear->link->expon == e) {
    				if (Rear->link->coef + c) { //!=0时
    					Rear->link->coef += c;
    				}
    				else {
    					tempP = Rear->link;
    					Rear->link = tempP->link;
    					free(tempP);
    				}
    			}
    			else {
    				t = (Polynomial)malloc(sizeof(struct PolyNode));
    				t->coef = c;
    				t->expon = e;
    				t->link = Rear->link;
    				Rear->link = t;
    				Rear = Rear->link;
    			}
    			T2 = T2->link;
    		}
    		T1 = T1->link;
    	}
    	tempP = P;
    	P = P -> link;
      free(tempP);
    	return P;
    }
    void PrintPoly(Polynomial P) {
    	int flag = 0;
    	if (!P) {printf("0 0
    "); return;}
    	while (P) {
    		if (!flag) {
    			flag = 1;
    		}
    		else {
    			printf(" ");
    		}
    		printf("%d %d",P->coef,P->expon);
    		P = P->link;
    	}
    	printf("
    ");
    }
    
    int main(){
    	Polynomial P1, P2, PP, PS;
    	P1 = ReadPoly();
    	P2 = ReadPoly();
    	PP = Mult(P1,P2);
    	PrintPoly(PP);
    	PS = Add(P1, P2);
    	PrintPoly(PS);
        return 0;
    }
    
  • 相关阅读:
    cookie封装
    禁止网站某页面被频繁刷新(验证)
    $(...) is null
    svn: E155004: Working copy '/data/www' locked.
    svn checkout不带根文件夹方法
    IIS LUA推荐
    给Elasticsearch 5.2.2 设置用户权限 how to setting security for elasticsearch on windows
    怎么部署 .NET Core Web项目 到linux
    怎么删除Elasticsearch里的index内容
    Windows 计划任务 Task Schedule 怎么 运行 .bat文件
  • 原文地址:https://www.cnblogs.com/TangYJHappen/p/12988958.html
Copyright © 2011-2022 走看看