zoukankan      html  css  js  c++  java
  • HDU4714 Tree2cycle 解题报告

    题意

    给定一棵无根树,删除或连接一条边的代价为(1),求把树变为环的最小代价.

    前置思路

    如果删除了(k)条边,使得树变成((k+1))条链,再用((k+1))次连接操作把树变成一个环,那么总代价为((2 imes k +1)).

    问题转化为求(k)的最小值,即最少能将一棵树分为多少条链.

    思路1 树形DP

    树形DP求最少能将一棵树分为多少条链.

    采用像极了CF633F的思路,设(DP[i][0])表示最少能将(i)的子树分为多少条链,(DP[i][1])表示在(i)的子树中有一条可以向上继续拓展的链的情况下,最少能将(i)的子树分为多少条链.

    如果我们令(1)节点为树根,答案即为(DP[1][0]).

    状态转移方程:

    如果我们记(F(u)=DP[u][1]-DP[u][0]).那么:

    [DP[u][1]=min(F(v)) +sum_vDP[v][0]quad (vin son(u))]

    (min(F(v)))的含义是,找一条可以向上继续拓展的链,使它继续向上扩展.

    [DP[u][0]=min(F(v))+ min2(F(v)) +sum_vDP[v][0]quad (vin son(u))]

    其中(min2( ))表示非严格次小值.

    (min(F(v))+ min2(F(v)))的含义是,找两条可以继续向上扩展的链,在(u)点把他们接在一起.

    代码:

    #include<bits/stdc++.h>
    const int SIZE=200005,INF=0x3F3F3F3F;
    
    int head[SIZE],nex[SIZE],to[SIZE],P,DP[SIZE][2];
    void Link(int u,int v)
    {
    	nex[++P]=head[u];head[u]=P;to[P]=v;
    	nex[++P]=head[v];head[v]=P;to[P]=u;
    }
    
    int F(int u){return DP[u][1]-DP[u][0];}
    void DFS(int u,int Fa)
    {
    	int min1=INF,min2=INF,Cnt=0,sum=0;
    	for(int i=head[u];i;i=nex[i])
    	{
    		int v=to[i];
    		if(v==Fa)continue;
    		DFS(v,u);
    		++Cnt;
    		sum+=DP[v][0];
    		if(min1>F(v))min1=F(v);
    		else if(min2>F(v))min2=F(v);
    	}
    	if(Cnt==0)DP[u][1]=DP[u][0]=1;
    	else if(Cnt==1)DP[u][1]=DP[u][0]=std::min(sum+1,sum+min1);
    	else
    	{
    		DP[u][1]=sum+min1;
    		DP[u][0]=std::min(sum+min1+min2-1,DP[u][1]);
    	}
    } 
    
    int main()
    {
    	int n,u,v;
    	scanf("%d",&n);
    	for(int i=1;i<n;i++)
    	{
    		scanf("%d%d",&u,&v);
    		Link(u,v);
    	}
    	DFS(1,0);
    	printf("%d",2*DP[1][0]-1);
    	return 0;
    }
    

    思路2 贪心

    本题贪心过程非常巧妙,可以通过DFS遍历整棵树,回溯时,如果一个节点的度数(>2),就删掉多余的点,优先删父节点,这样可以使回溯到父节点时的答案更优,这一步答案也不会更劣.

  • 相关阅读:
    java这个404你能解决吗?
    java发邮件,这个坑你能填吗?
    自动评论csdn博客文章实现
    一款效率神器Ditto
    java加载国际化文件的几种姿势
    这个问题你能答对吗?
    mysql大小写敏感与校对规则
    java、golang日志文件转储压缩实现
    一款很好用的markdown编辑器
    beego与curl三件事
  • 原文地址:https://www.cnblogs.com/TaylorSwift13/p/11482074.html
Copyright © 2011-2022 走看看