zoukankan      html  css  js  c++  java
  • svm util tool

    #!/usr/bin/env python
    
    import os
    import sys
    from svm import *
    from svm import __all__ as svm_all
    
    
    __all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem',
               'svm_save_model', 'svm_train'] + svm_all
    
    sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path
    
    def svm_read_problem(data_file_name):
    	"""
    	svm_read_problem(data_file_name) -> [y, x]
    
    	Read LIBSVM-format data from data_file_name and return labels y
    	and data instances x.
    	"""
    	prob_y = []
    	prob_x = []
    	for line in open(data_file_name):
    		line = line.split(None, 1)
    		# In case an instance with all zero features
    		if len(line) == 1: line += ['']
    		label, features = line
    		xi = {}
    		for e in features.split():
    			ind, val = e.split(":")
    			xi[int(ind)] = float(val)
    		prob_y += [float(label)]
    		prob_x += [xi]
    	return (prob_y, prob_x)
    
    def svm_load_model(model_file_name):
    	"""
    	svm_load_model(model_file_name) -> model
    
    	Load a LIBSVM model from model_file_name and return.
    	"""
    	model = libsvm.svm_load_model(model_file_name.encode())
    	if not model:
    		print("can't open model file %s" % model_file_name)
    		return None
    	model = toPyModel(model)
    	return model
    
    def svm_save_model(model_file_name, model):
    	"""
    	svm_save_model(model_file_name, model) -> None
    
    	Save a LIBSVM model to the file model_file_name.
    	"""
    	libsvm.svm_save_model(model_file_name.encode(), model)
    
    def evaluations(ty, pv):
    	"""
    	evaluations(ty, pv) -> (ACC, MSE, SCC)
    
    	Calculate accuracy, mean squared error and squared correlation coefficient
    	using the true values (ty) and predicted values (pv).
    	"""
    	if len(ty) != len(pv):
    		raise ValueError("len(ty) must equal to len(pv)")
    	total_correct = total_error = 0
    	sumv = sumy = sumvv = sumyy = sumvy = 0
    	for v, y in zip(pv, ty):
    		if y == v:
    			total_correct += 1
    		total_error += (v-y)*(v-y)
    		sumv += v
    		sumy += y
    		sumvv += v*v
    		sumyy += y*y
    		sumvy += v*y
    	l = len(ty)
    	ACC = 100.0*total_correct/l
    	MSE = total_error/l
    	try:
    		SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
    	except:
    		SCC = float('nan')
    	return (ACC, MSE, SCC)
    
    def svm_train(arg1, arg2=None, arg3=None):
    	"""
    	svm_train(y, x [, options]) -> model | ACC | MSE
    	svm_train(prob [, options]) -> model | ACC | MSE
    	svm_train(prob, param) -> model | ACC| MSE
    
    	Train an SVM model from data (y, x) or an svm_problem prob using
    	'options' or an svm_parameter param.
    	If '-v' is specified in 'options' (i.e., cross validation)
    	either accuracy (ACC) or mean-squared error (MSE) is returned.
    	options:
    	    -s svm_type : set type of SVM (default 0)
    	        0 -- C-SVC		(multi-class classification)
    	        1 -- nu-SVC		(multi-class classification)
    	        2 -- one-class SVM
    	        3 -- epsilon-SVR	(regression)
    	        4 -- nu-SVR		(regression)
    	    -t kernel_type : set type of kernel function (default 2)
    	        0 -- linear: u'*v
    	        1 -- polynomial: (gamma*u'*v + coef0)^degree
    	        2 -- radial basis function: exp(-gamma*|u-v|^2)
    	        3 -- sigmoid: tanh(gamma*u'*v + coef0)
    	        4 -- precomputed kernel (kernel values in training_set_file)
    	    -d degree : set degree in kernel function (default 3)
    	    -g gamma : set gamma in kernel function (default 1/num_features)
    	    -r coef0 : set coef0 in kernel function (default 0)
    	    -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
    	    -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
    	    -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
    	    -m cachesize : set cache memory size in MB (default 100)
    	    -e epsilon : set tolerance of termination criterion (default 0.001)
    	    -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
    	    -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
    	    -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
    	    -v n: n-fold cross validation mode
    	    -q : quiet mode (no outputs)
    	"""
    	prob, param = None, None
    	if isinstance(arg1, (list, tuple)):
    		assert isinstance(arg2, (list, tuple))
    		y, x, options = arg1, arg2, arg3
    		param = svm_parameter(options)
    		prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED))
    	elif isinstance(arg1, svm_problem):
    		prob = arg1
    		if isinstance(arg2, svm_parameter):
    			param = arg2
    		else:
    			param = svm_parameter(arg2)
    	if prob == None or param == None:
    		raise TypeError("Wrong types for the arguments")
    
    	if param.kernel_type == PRECOMPUTED:
    		for xi in prob.x_space:
    			idx, val = xi[0].index, xi[0].value
    			if xi[0].index != 0:
    				raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
    			if val <= 0 or val > prob.n:
    				raise ValueError('Wrong input format: sample_serial_number out of range')
    
    	if param.gamma == 0 and prob.n > 0:
    		param.gamma = 1.0 / prob.n
    	libsvm.svm_set_print_string_function(param.print_func)
    	err_msg = libsvm.svm_check_parameter(prob, param)
    	if err_msg:
    		raise ValueError('Error: %s' % err_msg)
    
    	if param.cross_validation:
    		l, nr_fold = prob.l, param.nr_fold
    		target = (c_double * l)()
    		libsvm.svm_cross_validation(prob, param, nr_fold, target)
    		ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
    		if param.svm_type in [EPSILON_SVR, NU_SVR]:
    			print("Cross Validation Mean squared error = %g" % MSE)
    			print("Cross Validation Squared correlation coefficient = %g" % SCC)
    			return MSE
    		else:
    			print("Cross Validation Accuracy = %g%%" % ACC)
    			return ACC
    	else:
    		m = libsvm.svm_train(prob, param)
    		m = toPyModel(m)
    
    		# If prob is destroyed, data including SVs pointed by m can remain.
    		m.x_space = prob.x_space
    		return m
    
    def svm_predict(y, x, m, options=""):
    	"""
    	svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
    
    	Predict data (y, x) with the SVM model m.
    	options:
    	    -b probability_estimates: whether to predict probability estimates,
    	        0 or 1 (default 0); for one-class SVM only 0 is supported.
    	    -q : quiet mode (no outputs).
    
    	The return tuple contains
    	p_labels: a list of predicted labels
    	p_acc: a tuple including  accuracy (for classification), mean-squared
    	       error, and squared correlation coefficient (for regression).
    	p_vals: a list of decision values or probability estimates (if '-b 1'
    	        is specified). If k is the number of classes, for decision values,
    	        each element includes results of predicting k(k-1)/2 binary-class
    	        SVMs. For probabilities, each element contains k values indicating
    	        the probability that the testing instance is in each class.
    	        Note that the order of classes here is the same as 'model.label'
    	        field in the model structure.
    	"""
    
    	def info(s):
    		print(s)
    
    	predict_probability = 0
    	argv = options.split()
    	i = 0
    	while i < len(argv):
    		if argv[i] == '-b':
    			i += 1
    			predict_probability = int(argv[i])
    		elif argv[i] == '-q':
    			info = print_null
    		else:
    			raise ValueError("Wrong options")
    		i+=1
    
    	svm_type = m.get_svm_type()
    	is_prob_model = m.is_probability_model()
    	nr_class = m.get_nr_class()
    	pred_labels = []
    	pred_values = []
    
    	if predict_probability:
    		if not is_prob_model:
    			raise ValueError("Model does not support probabiliy estimates")
    
    		if svm_type in [NU_SVR, EPSILON_SVR]:
    			info("Prob. model for test data: target value = predicted value + z,
    "
    			"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
    			nr_class = 0
    
    		prob_estimates = (c_double * nr_class)()
    		for xi in x:
    			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
    			label = libsvm.svm_predict_probability(m, xi, prob_estimates)
    			values = prob_estimates[:nr_class]
    			pred_labels += [label]
    			pred_values += [values]
    	else:
    		if is_prob_model:
    			info("Model supports probability estimates, but disabled in predicton.")
    		if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
    			nr_classifier = 1
    		else:
    			nr_classifier = nr_class*(nr_class-1)//2
    		dec_values = (c_double * nr_classifier)()
    		for xi in x:
    			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
    			label = libsvm.svm_predict_values(m, xi, dec_values)
    			if(nr_class == 1):
    				values = [1]
    			else:
    				values = dec_values[:nr_classifier]
    			pred_labels += [label]
    			pred_values += [values]
    
    	ACC, MSE, SCC = evaluations(y, pred_labels)
    	l = len(y)
    	if svm_type in [EPSILON_SVR, NU_SVR]:
    		info("Mean squared error = %g (regression)" % MSE)
    		info("Squared correlation coefficient = %g (regression)" % SCC)
    	else:
    		info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))
    
    	return pred_labels, (ACC, MSE, SCC), pred_values
    
    
    
  • 相关阅读:
    PlantsVsZombies_v2.0_1
    attackZombie如何实现符合需求的攻击函数_3
    attackZombie如何实现符合需求的攻击函数_2
    list_head.h
    attackZombie如何实现符合需求的攻击函数
    PlantsVsZombies_3
    串口服务器在激光切割机远程监控系统中的使用
    串口转以太网服务器在物联网中的行业应用
    物联网能源系统应用解决方案和作用什么?
    4G工业路由器在智能安防和监控中的应用
  • 原文地址:https://www.cnblogs.com/TendToBigData/p/10501152.html
Copyright © 2011-2022 走看看