zoukankan      html  css  js  c++  java
  • Keras CNN 数字识别

    难点是版本变化后 方法不再匹配 ,同时每个方法具体意义需要揣摩
    
    # Larger CNN for the MNIST Dataset
    # 2.Negative dimension size caused by subtracting 5 from 1 for 'conv2d_4/convolution' (op: 'Conv2D') with input shapes
    # 3.UserWarning: Update your `Conv2D` call to the Keras 2 API: http://blog.csdn.net/johinieli/article/details/69222956
    # 4.Error when checking input: expected conv2d_1_input to have shape (None, 28, 28, 1) but got array with shape (60000, 1, 28, 28)
    
    # talk to wumi,you good .
    
    # python 3.5.4
    # keras.__version__  : 2.0.6
    # thensorflow 1.2.1
    # theano 0.10.0beta1
    
    # 不错的blog  http://blog.csdn.net/shizhengxin123/article/details/72383728
    
    import numpy
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import Dropout
    from keras.layers import Flatten
    from keras.layers.convolutional import Conv2D
    from keras.layers.convolutional import MaxPooling2D
    from keras.utils import np_utils
    import matplotlib.pyplot as plt
    from keras.constraints import maxnorm
    from keras.optimizers import SGD
    # fix random seed for reproducibility
    seed = 7
    numpy.random.seed(seed)
    # load data
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    # reshape to be [samples][pixels][width][height]
    X_train = X_train.reshape(X_train.shape[0], 28, 28,1).astype('float32')
    X_test = X_test.reshape(X_test.shape[0],28, 28,1).astype('float32')
    #X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
    #X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')    <---4 
    # normalize inputs from 0-255 to 0-1
    X_train = X_train / 255
    X_test = X_test / 255
    # one hot encode outputs
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    num_classes = y_test.shape[1]
    ###raw
    # define the larger model
    def larger_model():
        # create model
        model = Sequential()
        model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28,1), activation='relu'))
    	#model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28,1), activation='relu'))   <----3,2
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.4))
        model.add(Conv2D(15, (3, 3), activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.4))
        model.add(Flatten())
        model.add(Dense(128, activation='relu'))
        model.add(Dropout(0.4))
        model.add(Dense(50, activation='relu'))
        model.add(Dropout(0.4))
        model.add(Dense(num_classes, activation='softmax'))
        # Compile model
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        return model
    
    # build the model
    model = larger_model()
    # Fit the model
    model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2)   # epochs 200 too bigger
    #model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=200, batch_size=200, verbose=2)
    # Final evaluation of the model
    scores = model.evaluate(X_test, y_test, verbose=0)
    print("Large CNN Error: %.2f%%" % (100-scores[1]*100))
    scores1 = model.evaluate(X_test[0], y_test[0], verbose=0)
    print(scores1)

  • 相关阅读:
    i++后的哈希码会变的原因
    Synchronized 锁的错误使用方式及如何解决
    线程的状态及状态之间的转换
    水满自溢「限流算法第四把法器:漏桶算法」- 第303篇
    Thread的Interrupt、isInterrupted、interrupted
    证明java本身是一个多线程
    强引用、软引用、弱引用、虚引用
    经典脏读,幻想读 不可重复读
    没有预热,不叫高并发「限流算法第三把法器:令牌桶算法」- 第302篇
    redisAPI
  • 原文地址:https://www.cnblogs.com/TendToBigData/p/10501211.html
Copyright © 2011-2022 走看看