zoukankan      html  css  js  c++  java
  • Python 机器学习 简单实现

    程序使用版本 :
    Python 3.4
    安装对应版本的依赖
    numpy , scipy , matplotlib , scikit_learn
    参考
    http://blog.csdn.net/zouxy09/article/details/48903179

    http://www.jianshu.com/p/21b758541825


    KNN 算法

    一组(m)训练数据,一组(n)测试数据

    测试数据每一组到训练数据集(m)的有效距离的升序排列,从序列中选区前K个值,对这K个值分组,求概率最高(K 个数据中值出现频率最高的)的即测试数据的值 。

    迭代n组数据,观察结果是否符合预期。



    #!usr/bin/env python  
    #-*- coding: utf-8 -*-  
      
    import sys  
    import os  
    import time  
    from sklearn import metrics  
    import numpy as np  
    import pickle
    import importlib
      
    importlib.reload(sys)  
    #sys.setdefaultencoding('utf8')
    
    # Multinomial Naive Bayes Classifier
    # 朴素贝叶斯
    def naive_bayes_classifier(train_x, train_y):  
        from sklearn.naive_bayes import MultinomialNB  
        model = MultinomialNB(alpha=0.01)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # KNN Classifier
    # K最近邻
    def knn_classifier(train_x, train_y):  
        from sklearn.neighbors import KNeighborsClassifier  
        model = KNeighborsClassifier()  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Logistic Regression Classifier
    # 逻辑回归
    def logistic_regression_classifier(train_x, train_y):  
        from sklearn.linear_model import LogisticRegression  
        model = LogisticRegression(penalty='l2')  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Random Forest Classifier
    # 随机森林
    def random_forest_classifier(train_x, train_y):  
        from sklearn.ensemble import RandomForestClassifier  
        model = RandomForestClassifier(n_estimators=8)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Decision Tree Classifier
    # 决策树
    def decision_tree_classifier(train_x, train_y):  
        from sklearn import tree  
        model = tree.DecisionTreeClassifier()  
        model.fit(train_x, train_y)  
        return model  
      
      
    # GBDT(Gradient Boosting Decision Tree) Classifier
    # 梯度推进 
    def gradient_boosting_classifier(train_x, train_y):  
        from sklearn.ensemble import GradientBoostingClassifier  
        model = GradientBoostingClassifier(n_estimators=200)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # SVM Classifier
    # 支持向量机
    def svm_classifier(train_x, train_y):  
        from sklearn.svm import SVC  
        model = SVC(kernel='rbf', probability=True)  
        model.fit(train_x, train_y)  
        return model  
      
    # SVM Classifier using cross validation
    # 支持向量机 交叉验证
    def svm_cross_validation(train_x, train_y):  
        from sklearn.grid_search import GridSearchCV  
        from sklearn.svm import SVC  
        model = SVC(kernel='rbf', probability=True)  
        param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}  
        grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)  
        grid_search.fit(train_x, train_y)  
        best_parameters = grid_search.best_estimator_.get_params()  
        for para, val in best_parameters.items():  
            print (para, val  )
        model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)  
        model.fit(train_x, train_y)  
        return model  
      
    def read_data(data_file):  
        import gzip  
        f = gzip.open(data_file, "rb",'utf8')
        
        
        train, val, test = pickle.load(f,encoding="bytes")  # add ,encoding="bytes"
        f.close()  
        train_x = train[0]  
        train_y = train[1]  
        test_x = test[0]  
        test_y = test[1]  
        return train_x, train_y, test_x, test_y  
          
    if __name__ == '__main__':  
        data_file = "C:Python34TestCodesmnist.pkl.gz"  
        thresh = 0.5  
        model_save_file = None  
        model_save = {}  
          
        test_classifiers = ['NB 朴素贝叶斯', 'KNN K最近邻', 'LR  逻辑回归', 'RF  随机森林', 'DT 决策树', 'SVM 支持向量机', 'GBDT 梯度推进']  
        classifiers = {'NB':naive_bayes_classifier,        # 朴素贝叶斯
                      'KNN':knn_classifier,                # K最近邻
                       'LR':logistic_regression_classifier,# 逻辑回归 
                       'RF':random_forest_classifier,      # 随机森林
                       'DT':decision_tree_classifier,      # 决策树
                      'SVM':svm_classifier,                # 支持向量机
                    'SVMCV':svm_cross_validation,          # 支持向量机 交叉验证
                     'GBDT':gradient_boosting_classifier   # 梯度推进 
        }  
          
        print("reading training and testing data...")
        train_x, train_y, test_x, test_y = read_data(data_file)  
        num_train, num_feat = train_x.shape  
        num_test, num_feat = test_x.shape  
        is_binary_class = (len(np.unique(train_y)) == 2)  
        print ('******************** Data Info *********************' ) 
        print ('#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)  )
          
        for classifier in test_classifiers:  
            print ('******************* %s ********************' % classifier  )
            start_time = time.time()  
            model = classifiers[classifier](train_x, train_y)  
            print ('training took %fs!' % (time.time() - start_time)  )
            predict = model.predict(test_x)  
            if model_save_file != None:  
                model_save[classifier] = model  
            if is_binary_class:  
                precision = metrics.precision_score(test_y, predict)  
                recall = metrics.recall_score(test_y, predict)  
                print ('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall) ) 
            accuracy = metrics.accuracy_score(test_y, predict)  
            print ('accuracy: %.2f%%' % (100 * accuracy)   )
      
        if model_save_file != None:  
            pickle.dump(model_save, open(model_save_file, 'wb'))  
    





    ================= RESTART: C:Python34TestCodesTestOne.py =================
    reading training and testing data...
    <gzip _io.BufferedReader name='C:\Python34\TestCodes\mnist.pkl.gz' 0x483470>
    ******************** Data Info *********************
    #training data: 50000, #testing_data: 10000, dimension: 784
    ******************* NB ********************
    training took 1.250072s!
    accuracy: 83.69%
    ******************* KNN ********************
    training took 34.031946s!
    accuracy: 96.64%
    ******************* LR ********************
    training took 69.958001s!
    accuracy: 91.99%
    ******************* RF ********************
    training took 3.970227s!
    accuracy: 93.94%
    ******************* DT ********************
    training took 22.557290s!
    accuracy: 87.02%
    ******************* SVM ********************
    training took 3078.619087s!
    accuracy: 94.35%
    ******************* GBDT ********************
    training took 6595.662250s!

    accuracy: 96.17%




  • 相关阅读:
    【RocketMQ之介绍】
    1. JVM体系结构概述
    技术贴
    http协议
    如何在2个小时之内掌握48个国际音标?
    托业全真高频词汇(一)
    三. 托业单词之业务拓展 Business Development
    二、托业单词之人事及管理 Personnel & Management
    一、托业单词之办公室事宜 Office matters
    VUE 之让数字四舍五入
  • 原文地址:https://www.cnblogs.com/TendToBigData/p/10501398.html
Copyright © 2011-2022 走看看