zoukankan      html  css  js  c++  java
  • DP(斜率优化):HDU 3507 Print Article

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 8199    Accepted Submission(s): 2549

    Problem Description
      Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
      There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
      A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
      学到了,这样的斜率优化。
      
     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 const int maxn=500010;
     5 long long f[maxn],s[maxn];
     6 int q[maxn]; 
     7 int main()
     8 {
     9     int n,m,front,back;
    10     while(~scanf("%d%d",&n,&m))
    11     {
    12         s[0]=f[0]=0;
    13         for(int i=1;i<=n;i++)scanf("%d",&s[i]);
    14         for(int i=2;i<=n;i++)s[i]+=s[i-1];
    15         
    16         front=1;back=2;
    17         q[front]=0;
    18         
    19         for(int i=1;i<=n;i++)
    20         {
    21             while(front<back-1&&(f[q[front+1]]+s[q[front+1]]*s[q[front+1]])-(f[q[front]]+s[q[front]]*s[q[front]])<=2*s[i]*(s[q[front+1]]-s[q[front]])) front++;
    22             
    23             f[i]=f[q[front]]+(s[i]-s[q[front]])*(s[i]-s[q[front]])+m;
    24             
    25             while(front<back-1&&(s[q[back-1]]-s[q[back-2]])*((f[i]+s[i]*s[i])-(f[q[back-1]]+s[q[back-1]]*s[q[back-1]]))<=(s[i]-s[q[back-1]])*((f[q[back-1]]+s[q[back-1]]*s[q[back-1]])-(f[q[back-2]]+s[q[back-2]]*s[q[back-2]])))back--;
    26             q[back++]=i;
    27         }
    28         printf("%lld
    ",f[n]);
    29     }
    30     return 0;
    31 }
     
    尽最大的努力,做最好的自己!
  • 相关阅读:
    06 | x86架构:有了开放的架构,才能打造开放的营商环境
    02 | 学习路径:爬过这六个陡坡,你就能对Linux了如指掌
    01 | 入学测验:你究竟对Linux操作系统了解多少?
    String、StringBuffer与StringBuilder区别
    JavaSE语言基础之字符串
    JavaSE语言基础之数组及其排序
    JavaSE语言基础之流程控制语句
    JavaSE语言基础之数据类型
    Java开发环境配置
    shell 脚本 自增
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5249644.html
Copyright © 2011-2022 走看看