zoukankan      html  css  js  c++  java
  • 动态规划(斜率优化):SPOJ Commando

    Commando


    You are the commander of a troop of n soldiers, numbered from 1 to n. For the battle ahead, you plan to divide these n soldiers into several com-mando units. To promote unity and boost morale, each unit will consist of a contiguous sequence of soldiers of the form (i, i+1, . . . , i+k).

    Each soldier i has a battle effectiveness rating xi . Originally, the battle effectiveness x of a commando unit (i, i+1, . . . , i+k) was computed by adding up the individual battle effectiveness of the soldiers in the unit. In other words, x = xi + xi+1 + · · · + xi+k .


    However, years of glorious victories have led you to conclude that the battle effectiveness of a unit should be adjusted as follows: the adjusted effectiveness x is computed by using the equation x = ax2 + bx + c, where a,b, c are known coefficients(a < 0), x is the original effectiveness of the unit.

     

    Your task as commander is to divide your soldiers into commando units in order to maximize the sum of the adjusted effectiveness of all the units.

     

    For instance, suppose you have 4 soldiers, x1 = 2, x2 = 2, x3 = 3, x4 = 4. Further, let the coefficients for the equation to adjust the battle effectiveness of a unit be a = −1, b = 10, c = −20. In this case, the best solution is to divide the soldiers into three commando units: The first unit contains soldiers 1 and 2, the second unit contains soldier 3, and the third unit contains soldier 4. The battle effectiveness of the three units are 4, 3, 4 respectively, and the
    adjusted effectiveness are 4, 1, 4 respectively. The total adjusted effectiveness for this grouping is 9 and it can be checked that no better solution is possible.

    Input format:

    First Line of input consists number of cases T.

    Each case consists of three lines. The first line contains a positive integer n, the total number of soldiers. The second line contains 3 integers a, b, and c, the coefficients for the equation to adjust the battle effectiveness of a commando unit. The last line contains n integers x1 , x2 , . . . , xn , sepa-rated by spaces, representing the battle effectiveness of soldiers 1, 2, . . . , n, respectively.

    Constraints:

    T<=3

    n ≤ 1, 000, 000,

    −5 ≤ a ≤ −1

    |b| ≤ 10, 000, 000

    |c| ≤ 10, 000, 000

    1 ≤ xi ≤ 100.

     


    Output format:

    Output each answer in a single line.

     

    Input:

    3
    4
    -1 10 -20
    2 2 3 4
    5
    -1 10 -20
    1 2 3 4 5
    8
    -2 4 3
    100 12 3 4 5 2 4 2

    Output:

    9
    13
    -19884

     

      这道题又是一如既往的推公式,推出来后又水过了。

      原来APIO的题目也不是那么难嘛!

     1 //rp++
     2 //#include <bits/stdc++.h>
     3 
     4 #include <iostream>
     5 #include <cstring>
     6 #include <cstdio>
     7 using namespace std;
     8 const int maxn=1000010;
     9 long long f[maxn],s[maxn],a,b,c;
    10 int q[maxn],st,ed;
    11 long long Get_this(int j,int k)
    12 {
    13     return f[j]-f[k]+(a*(s[j]+s[k])-b)*(s[j]-s[k]);
    14 }
    15 int main()
    16 {
    17     //freopen(".in","r",stdin);
    18     //freopen(".out","w",stdout);
    19     int T;s[0]=0;
    20     scanf("%d",&T);
    21     while(T--)
    22     {
    23         int n;
    24         scanf("%d",&n);
    25         scanf("%lld%lld%lld",&a,&b,&c);
    26         for(int i=1;i<=n;i++)
    27             scanf("%lld",&s[i]);
    28         
    29         for(int i=2;i<=n;i++)
    30             s[i]+=s[i-1];
    31         
    32         st=ed=1;
    33         q[st]=0;
    34         for(int i=1;i<=n;i++){
    35             while(st<ed&&Get_this(q[st+1],q[st])>=2*a*s[i]*(s[q[st+1]]-s[q[st]]))
    36                 st++;
    37             
    38             f[i]=f[q[st]]+a*(s[i]-s[q[st]])*(s[i]-s[q[st]])+b*(s[i]-s[q[st]])+c;
    39             
    40             while(st<ed&&Get_this(i,q[ed])*(s[q[ed]]-s[q[ed-1]])>=Get_this(q[ed],q[ed-1])*(s[i]-s[q[ed]]))
    41                 ed--;
    42             
    43             q[++ed]=i;
    44         }
    45         printf("%lld
    ",f[n]);
    46     }
    47     return 0;
    48 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    Linux下几种文件传输命令 sz rz sftp scp
    jqGrid subGrid配置 如何首次加载动态展开所有的子表格
    MySQL使用规范
    Navicat连接MySQL报错2059
    微信小程序
    完美解决 ios10 及以上 Safari 无法禁止缩放的问题
    html5利用getObjectURL获取图片路径上传图片
    Vue的单页应用中如何引用单独的样式文件
    用JS添加和删除class类名
    APP中的 H5和原生页面如何分辨、何时使用
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5266698.html
Copyright © 2011-2022 走看看