zoukankan      html  css  js  c++  java
  • 动态规划(斜率优化):SPOJ Commando

    Commando


    You are the commander of a troop of n soldiers, numbered from 1 to n. For the battle ahead, you plan to divide these n soldiers into several com-mando units. To promote unity and boost morale, each unit will consist of a contiguous sequence of soldiers of the form (i, i+1, . . . , i+k).

    Each soldier i has a battle effectiveness rating xi . Originally, the battle effectiveness x of a commando unit (i, i+1, . . . , i+k) was computed by adding up the individual battle effectiveness of the soldiers in the unit. In other words, x = xi + xi+1 + · · · + xi+k .


    However, years of glorious victories have led you to conclude that the battle effectiveness of a unit should be adjusted as follows: the adjusted effectiveness x is computed by using the equation x = ax2 + bx + c, where a,b, c are known coefficients(a < 0), x is the original effectiveness of the unit.

     

    Your task as commander is to divide your soldiers into commando units in order to maximize the sum of the adjusted effectiveness of all the units.

     

    For instance, suppose you have 4 soldiers, x1 = 2, x2 = 2, x3 = 3, x4 = 4. Further, let the coefficients for the equation to adjust the battle effectiveness of a unit be a = −1, b = 10, c = −20. In this case, the best solution is to divide the soldiers into three commando units: The first unit contains soldiers 1 and 2, the second unit contains soldier 3, and the third unit contains soldier 4. The battle effectiveness of the three units are 4, 3, 4 respectively, and the
    adjusted effectiveness are 4, 1, 4 respectively. The total adjusted effectiveness for this grouping is 9 and it can be checked that no better solution is possible.

    Input format:

    First Line of input consists number of cases T.

    Each case consists of three lines. The first line contains a positive integer n, the total number of soldiers. The second line contains 3 integers a, b, and c, the coefficients for the equation to adjust the battle effectiveness of a commando unit. The last line contains n integers x1 , x2 , . . . , xn , sepa-rated by spaces, representing the battle effectiveness of soldiers 1, 2, . . . , n, respectively.

    Constraints:

    T<=3

    n ≤ 1, 000, 000,

    −5 ≤ a ≤ −1

    |b| ≤ 10, 000, 000

    |c| ≤ 10, 000, 000

    1 ≤ xi ≤ 100.

     


    Output format:

    Output each answer in a single line.

     

    Input:

    3
    4
    -1 10 -20
    2 2 3 4
    5
    -1 10 -20
    1 2 3 4 5
    8
    -2 4 3
    100 12 3 4 5 2 4 2

    Output:

    9
    13
    -19884

     

      这道题又是一如既往的推公式,推出来后又水过了。

      原来APIO的题目也不是那么难嘛!

     1 //rp++
     2 //#include <bits/stdc++.h>
     3 
     4 #include <iostream>
     5 #include <cstring>
     6 #include <cstdio>
     7 using namespace std;
     8 const int maxn=1000010;
     9 long long f[maxn],s[maxn],a,b,c;
    10 int q[maxn],st,ed;
    11 long long Get_this(int j,int k)
    12 {
    13     return f[j]-f[k]+(a*(s[j]+s[k])-b)*(s[j]-s[k]);
    14 }
    15 int main()
    16 {
    17     //freopen(".in","r",stdin);
    18     //freopen(".out","w",stdout);
    19     int T;s[0]=0;
    20     scanf("%d",&T);
    21     while(T--)
    22     {
    23         int n;
    24         scanf("%d",&n);
    25         scanf("%lld%lld%lld",&a,&b,&c);
    26         for(int i=1;i<=n;i++)
    27             scanf("%lld",&s[i]);
    28         
    29         for(int i=2;i<=n;i++)
    30             s[i]+=s[i-1];
    31         
    32         st=ed=1;
    33         q[st]=0;
    34         for(int i=1;i<=n;i++){
    35             while(st<ed&&Get_this(q[st+1],q[st])>=2*a*s[i]*(s[q[st+1]]-s[q[st]]))
    36                 st++;
    37             
    38             f[i]=f[q[st]]+a*(s[i]-s[q[st]])*(s[i]-s[q[st]])+b*(s[i]-s[q[st]])+c;
    39             
    40             while(st<ed&&Get_this(i,q[ed])*(s[q[ed]]-s[q[ed-1]])>=Get_this(q[ed],q[ed-1])*(s[i]-s[q[ed]]))
    41                 ed--;
    42             
    43             q[++ed]=i;
    44         }
    45         printf("%lld
    ",f[n]);
    46     }
    47     return 0;
    48 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    TIOBE2017榜单公布_PHP还会是世界上最好的语言吗?
    一个优秀的程序猿应该具备哪些技能?
    7月10日云栖精选夜读:看阿里云窄带高清如何支援优酷 让《楚乔传》更清晰
    如何修复Kindle频繁自动锁屏和解锁
    CentOS 7 配置nginx的service 脚本例子
    Linux系统磁盘分区(逻辑卷LVM)的扩充
    CentOS6.7配置软raid5(模拟故障增加硬盘)
    运行软件显示:缺少packet.dll文件
    《需求工程——软件建模》06
    《需求工程——软件建模》05
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5266698.html
Copyright © 2011-2022 走看看