zoukankan      html  css  js  c++  java
  • 数据结构(RMQ):POJ 3624 Balanced Lineup

    Balanced Lineup
     

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

      这题是一个裸的RMQ问题。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int maxn=50010;
     6 int mm[maxn],Min[maxn][20],Max[maxn][20],a[maxn];
     7 int main(){
     8 #ifndef ONLINE_JUDGE
     9     //freopen(".in","r",stdin);
    10     //freopen(".out","w",stdout);
    11 #endif    
    12     
    13     int n,Q;
    14     scanf("%d%d",&n,&Q);
    15     for(int i=1;i<=n;i++)
    16         scanf("%d",&a[i]);
    17     mm[0]=-1;
    18     for(int i=1;i<=n;i++){
    19         mm[i]=(i&(i-1))?mm[i-1]:mm[i-1]+1;
    20         Max[i][0]=a[i];
    21         Min[i][0]=a[i];
    22     }
    23     for(int k=1;k<=mm[n];k++)
    24         for(int i=1;i+(1<<(k-1))<=n;i++){
    25             Max[i][k]=max(Max[i][k-1],Max[i+(1<<(k-1))][k-1]);
    26             Min[i][k]=min(Min[i][k-1],Min[i+(1<<(k-1))][k-1]);
    27         }
    28         
    29     int a,b;
    30     while(Q--)
    31     {
    32         scanf("%d%d",&a,&b);
    33         printf("%d
    ",max(Max[a][mm[b-a+1]],Max[b-(1<<mm[b-a+1])+1][mm[b-a+1]])-min(Min[a][mm[b-a+1]],Min[b-(1<<mm[b-a+1])+1][mm[b-a+1]]));
    34     }    
    35     return 0;
    36 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    MySQL中默认值中用时间函数的问题
    mysql数据表的操作
    mysql数据库的基本操作
    mysql数据库的几个基本概念
    【转载】CentOS6.5_X64下安装配置MongoDB数据库
    Swap Swap,即交换分区
    linux中给PHP安装mongodb的扩展
    centos yum 安装 mongodb 以及php扩展
    设计模式主要分三个类型:创建型、结构型和行为型
    MySQL DELETE语句和TRUNCATE TABLE语句的区别
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5277449.html
Copyright © 2011-2022 走看看