zoukankan      html  css  js  c++  java
  • 图论(二分图,KM算法):HDU 3488 Tour

    Tour

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 2628    Accepted Submission(s): 1285


    Problem Description
    In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way roads connecting them. You are lucky enough to have a chance to have a tour in the kingdom. The route should be designed as: The route should contain one or more loops. (A loop is a route like: A->B->……->P->A.)
    Every city should be just in one route.
    A loop should have at least two cities. In one route, each city should be visited just once. (The only exception is that the first and the last city should be the same and this city is visited twice.)
    The total distance the N roads you have chosen should be minimized.
     
    Input
    An integer T in the first line indicates the number of the test cases.
    In each test case, the first line contains two integers N and M, indicating the number of the cities and the one-way roads. Then M lines followed, each line has three integers U, V and W (0 < W <= 10000), indicating that there is a road from U to V, with the distance of W.
    It is guaranteed that at least one valid arrangement of the tour is existed.
    A blank line is followed after each test case.
     

    Output

    For each test case, output a line with exactly one integer, which is the minimum total distance.
     
    Sample Input
    1
    6 9
    1 2 5
    2 3 5
    3 1 10
    3 4 12
    4 1 8
    4 6 11
    5 4 7
    5 6 9
    6 5 4
     
    Sample Output
    42
     
       这题就是KM算法的模板。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int maxn=220;
     6 const int INF=2147483647;
     7 int w[maxn][maxn],sx[maxn],sy[maxn],lx[maxn],ly[maxn];
     8 int match[maxn],slack[maxn];
     9 int n,m;
    10 
    11 bool Search(int x){
    12     sx[x]=true;
    13     for(int y=1;y<=n;y++){
    14         if(sy[y])continue;//?
    15         int t=lx[x]+ly[y]-w[x][y];
    16         if(t)
    17             slack[y]=min(slack[y],t);
    18         else{
    19             sy[y]=true;
    20             if(!match[y]||Search(match[y])){
    21                 match[y]=x;
    22                 return true;
    23             }
    24         }
    25     }
    26     return false;
    27 }
    28 
    29 int KM(){
    30     memset(lx,0x80,sizeof(lx));
    31     memset(ly,0,sizeof(ly));
    32     for(int i=1;i<=n;i++)
    33         for(int j=1;j<=n;j++)
    34             lx[i]=max(lx[i],w[i][j]);
    35     
    36     for(int i=1;i<=n;i++){
    37         memset(slack,127,sizeof(slack));
    38         while(true){
    39             memset(sx,0,sizeof(sx));
    40             memset(sy,0,sizeof(sy));
    41             if(Search(i))
    42                 break;
    43             int minn=INF;
    44             for(int j=1;j<=n;j++)
    45                 if(!sy[j]&&minn>slack[j])
    46                     minn=slack[j];
    47             
    48             for(int j=1;j<=n;j++)
    49                 if(sx[j])
    50                     lx[j]-=minn;
    51                     
    52             for(int j=1;j<=n;j++)
    53                 if(sy[j])
    54                     ly[j]+=minn;
    55                 else 
    56                     slack[j]-=minn;
    57         }    
    58     }    
    59     int ret=0;
    60     for(int i=1;i<=n;i++)
    61         ret+=w[match[i]][i];
    62     return ret;    
    63 }
    64 int main(){
    65     int T;
    66     scanf("%d",&T);
    67     while(T--){
    68         scanf("%d%d",&n,&m);
    69         memset(w,0x80,sizeof(w));
    70         memset(match,0,sizeof(match));
    71         for(int i=1,a,b,c;i<=m;i++){
    72             scanf("%d%d%d",&a,&b,&c);
    73             w[a][b]=max(w[a][b],-c);
    74         }
    75         printf("%d
    ",-KM());
    76     }
    77     return 0;
    78 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    C#中ArrayList 与 string、string[]数组 的转换
    C#int转成string,string转成int...获取listbox中的值...ListBox 如何循环赋值
    windows下定时利用bat脚本实现ftp备份上传
    Matlab中的静态文本框中显示多行内容
    matlab gui edit text 多行输出
    matlab的GUI中用全局变量来终止循环
    windows下定时利用bat脚本实现ftp上传和下载
    利用MATLAB绘制置信区域
    用MATLAB做聚类分析
    递归、斐波拉契数列、快速排序、八皇后
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5330061.html
Copyright © 2011-2022 走看看