zoukankan      html  css  js  c++  java
  • 树(最小乘积生成树,克鲁斯卡尔算法):BOI timeismoney

    The NetLine company wants to offer broadband internet to N towns. For this, it suffices to construct
    a network of N-1 broadband links between the towns, with the property that a message can travel
    from any town to any other town on this network. NetLine has already identified all pairs of towns
    between which a direct link can be constructed. For each such possible link, they know the cost and
    the time it would take to construct the link.
    The company is interested in minimizing both the total amount of time (links are built one at a time)
    and the total amount of money spent to build the entire network. Since they couldn’t decide among
    the two criteria, they decided to use the following formula to evaluate the value of a network:
    SumTime = sum of times spent to construct the chosen links
    SumMoney = sum of the money spent to construct the chosen links
    V = SumTime * SumMoney
    Task
    Find a list of N-1 links to build, which minimizes the value V.
    Description of input
    The first line of input contains integers N – the number of towns and M – the number of pairs of
    towns which can be connected. The towns are numbered starting from 0 to N-1. Each of the next M
    lines contain four integers x, y, t and c – meaning town x can be connected to town y in time t and
    with cost c.
    Description of output
    In the first line of output print two numbers: the total time (SumTime) and total money (Sum-
    Money) used in the optimal solution (the one with minimal value V), separated by one space. The
    next N-1 lines describe the links to be constructed. Each line contains a pair of numbers (x,y) describing
    a link to be build (which must be among the possible links described in the input file). The
    pairs can be printed out in any order. When multiple solutions exist, you may print any of them.

    Constraints

    · 1 ≤ N ≤ 200
    · 1 ≤ M ≤ 10 000
    · 0 ≤ x,y ≤ N-1
    · 1 ≤ t,c ≤ 255
    · One test has M = N - 1
    · 40% of the tests will have for each possible link t = c
    Example
    timeismoney.in
    5 7
    0 1 161 79
    0 2 161 15
    0 3 13 153
    1 4 142 183
    2 4 236 80
    3 4 40 241
    2 1 65 92

    timeismoney.out

    279 501
    2 1
    0 3
    0 2
    3 4

      方案啥的很好解决,就不写了。

      和HNOI2014画框有类似的思想。

     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int maxn=210;
     6 const int maxm=10010;
     7 int fa[maxn],a[maxm],b[maxm];
     8 int u[maxm],v[maxm],n,m;
     9 
    10 struct Node{
    11     int x,y,z,id;
    12     Node(int a=0,int b=0,int c=0,int d=0){
    13         x=a;y=b;z=c;id=d;
    14     }
    15     friend bool operator <(Node a,Node b){
    16         return a.z<b.z;
    17     }
    18 }p[maxm];
    19 
    20 struct Point{
    21     int x,y;
    22     Point(int a=0,int b=0){
    23         x=a;y=b;
    24     }
    25     friend bool operator ==(Point a,Point b){
    26         return a.x==b.x&&a.y==b.y;
    27     }
    28 }lo,hi;
    29 
    30 int Find(int x){
    31     return fa[x]==x?x:fa[x]=Find(fa[x]);
    32 }
    33 
    34 Point Get_Ans(){
    35     sort(p+1,p+m+1);Point ret(0,0);
    36     for(int i=1;i<=n;i++)fa[i]=i;
    37     for(int i=1;i<=m;i++){
    38         int x=p[i].x,y=p[i].y;
    39         if(Find(x)!=Find(y)){
    40             ret.x+=a[p[i].id];
    41             ret.y+=b[p[i].id];
    42             fa[Find(y)]=Find(x);
    43         }
    44     }
    45     return ret;
    46 }
    47 
    48 Point Solve(Point l,Point r){
    49     for(int i=1;i<=m;i++)
    50         p[i]=Node(u[i],v[i],b[i]*(r.x-l.x)-a[i]*(r.y-l.y),i);
    51     Point mid=Get_Ans();
    52     if(mid==l||mid==r)return l.x*l.y<r.x*r.y?l:r;
    53     l=Solve(l,mid);r=Solve(mid,r);
    54     return l.x*l.y<r.x*r.y?l:r;    
    55 }
    56 
    57 int main(){
    58     freopen("timeismoney.in","r",stdin);
    59     freopen("timeismoney.out","w",stdout);
    60     scanf("%d%d",&n,&m);
    61     for(int i=1;i<=m;i++){
    62         scanf("%d%d",&u[i],&v[i]);u[i]+=1;v[i]+=1;
    63         scanf("%d%d",&a[i],&b[i]);
    64     }
    65     
    66     for(int i=1;i<=m;i++)p[i]=Node(u[i],v[i],a[i],i);lo=Get_Ans();
    67     for(int i=1;i<=m;i++)p[i]=Node(u[i],v[i],b[i],i);hi=Get_Ans();    
    68     Point ans=Solve(lo,hi);
    69     printf("%d %d
    ",ans.x,ans.y);    
    70     return 0;
    71 }
  • 相关阅读:
    oracle 内连接、外连接、自然连接、交叉连接练习
    oracle语句练习
    简单的oracle sql语句练习
    CountDownLatch 使用方法
    T1,T2,T3 三个线程顺序执行
    【2018 校招真题】斐波那契数列
    使用自己的域名解析 cnblogs 博客
    在 github 中新建仓库后,如何上传文件到这个仓库里面。
    数据库常用语句整理
    使用 JQuery 实现将 table 按照列排序
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5700737.html
Copyright © 2011-2022 走看看