zoukankan      html  css  js  c++  java
  • 搜索(剪枝优化):HDU 5113 Black And White

    Description

    In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
    ― Wikipedia, the free encyclopedia

    In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

    You are asked to solve a similar problem:

    Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells.

    Matt hopes you can tell him a possible coloring.

    Input

    The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

    For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

    The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used.

    It’s guaranteed that c 1 + c 2 + ・ ・ ・ + c K = N × M .

    Output

    For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).

    In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

    If there are multiple solutions, output any of them.

    Sample Input

    4
    1 5 2
    4 1
    3 3 4
    1 2 2 4
    2 3 3
    2 2 2
    3 2 3
    2 2 2

    Sample Output

    Case #1:
    NO
    Case #2:
    YES
    4 3 4
    2 1 2
    4 3 4
    Case #3:
    YES
    1 2 3
    2 3 1
    Case #4:
    YES
    1 2
    2 3
    3 1
      这道题就是搜索,剪枝优化是如果当前未染色的点数为x,(x+1)/2<max(col[i]),就可以return了。
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdio>
     5 using namespace std;
     6 const int N=6;
     7 int id[N][N],L[N*N],U[N*N],c[N*N];
     8 int T,cas,n,m,k,map[N*N],p[N*N];
     9 bool DFS(int x){
    10     if(x==n*m+1)return true;
    11     for(int i=1;i<=k;i++)
    12         if((n*m+2-x)/2<c[i])return false;
    13     for(int i=1;i<=k;i++){
    14         if(c[i]==0)continue;
    15         if(map[L[x]]!=i&&map[U[x]]!=i){
    16             c[i]-=1;map[x]=i;
    17             if(DFS(x+1))return true;
    18             c[i]+=1;map[x]=0;
    19         }
    20     }
    21     return false;
    22 }
    23 int main(){
    24     scanf("%d",&T);
    25     while(T--){int idx=0;
    26         scanf("%d%d%d",&n,&m,&k);
    27         for(int i=1;i<=k;i++)
    28             scanf("%d",&c[i]);    
    29         for(int i=1;i<=n;i++)
    30             for(int j=1;j<=m;j++)
    31                 id[i][j]=++idx;
    32         for(int i=1;i<=n;i++)
    33             for(int j=1;j<=m;j++){
    34                 L[id[i][j]]=id[i][j-1];
    35                 U[id[i][j]]=id[i-1][j];
    36             }
    37         printf("Case #%d:
    ",++cas);
    38         if(DFS(1)){
    39             puts("YES");
    40             for(int i=1;i<=n;i++){
    41                 for(int j=1;j<m;j++)
    42                     printf("%d ",map[(i-1)*m+j]);
    43                 printf("%d
    ",map[i*m]);    
    44             }    
    45         }    
    46         else puts("NO");            
    47     }
    48     return 0;
    49 }
  • 相关阅读:
    在linux上安装python, jupyter, 虚拟环境(virtualenv)以及 虚拟环境管理之virtualenvwraper
    linux
    Django ORM那些相关操作
    Django 中 form 介绍
    MySQL完整性约束
    git入门
    MySQL表的操作
    努力努力再努力
    Docker初始
    IO模型
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5943375.html
Copyright © 2011-2022 走看看