zoukankan      html  css  js  c++  java
  • 动态规划(DP计数):HDU 5116 Everlasting L

    Matt loves letter L.

    A point set P is (a, b)-L if and only if there exists x, y satisfying:

    P = {(x, y), (x + 1, y), . . . , (x + a, y), (x, y + 1), . . . , (x, y + b)}(a, b ≥ 1)

    A point set Q is good if and only if Q is an (a, b)-L set and gcd(a, b) = 1.

    Matt is given a point set S. Please help him find the number of ordered pairs of sets (A, B) such that:

     

    Input

    The first line contains only one integer T , which indicates the number of test cases.

    For each test case, the first line contains an integer N (0 ≤ N ≤ 40000), indicating the size of the point set S.

    Each of the following N lines contains two integers xi, yi, indicating the i-th point in S (1 ≤ xi, yi ≤ 200). It’s guaranteed that all (xi, yi) would be distinct.
     

    Output

    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the number of pairs.
     

    Sample Input

    2
    6
    1 1
    1 2
    2 1
    3 3
    3 4
    4 3
    9
    1 1
    1 2
    1 3
    2 1
    2 2
    2 3
    3 1
    3 2
    3 3

    Sample Output

    Case #1: 2
    Case #2: 6

    Hint

    n the second sample, the ordered pairs of sets Matt can choose are: A = {(1, 1), (1, 2), (1, 3), (2, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (1, 3), (2, 1)} A = {(1, 1), (1, 2), (2, 1), (3, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (2, 1), (3, 1)} A = {(1, 1), (1, 2), (2, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (2, 1)} Hence, the answer is 6.
      这道题DP计数,十分有意义。
      dp[i][j]:表示a∈[1,i],b∈[1,j],sigma(a,b)==1
      sum[i][j]:表示竖直部分穿过点(i,j)的L的个数
      看代码就能懂了……
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    const int N=210;
    typedef long long LL;
    LL map[N][N],st[N],S,M;
    LL f[N][N],dp[N][N],sum[N][N];
    /*f[i][j]:[1,j]中与i互质的数的个数*/
    LL dwn[N][N],rht[N][N];int T,cas,k,x,y;
    LL Gcd(LL a,LL b){return b?Gcd(b,a%b):a;}
    void Prepare(){
        for(int i=1;i<=200;i++)
            for(int j=1;j<=200;j++){
                f[i][j]=f[i][j-1]+(Gcd(i,j)==1);
                dp[i][j]=dp[i-1][j]+f[i][j];
            }
    }
    void Init(){S=M=0;
        memset(map,0,sizeof(map));
        memset(sum,0,sizeof(sum));
        memset(dwn,0,sizeof(dwn));
        memset(rht,0,sizeof(rht));
    }
    int main(){
        Prepare();
        scanf("%d",&T);
        while(T--){
            Init();scanf("%d",&k);
            while(k--){scanf("%d%d",&x,&y);map[x][y]=1;}
            for(int i=200;i>=1;i--)
                for(int j=200;j>=1;j--){
                    if(!map[i][j])continue;
                    if(map[i+1][j])dwn[i][j]=dwn[i+1][j]+1;
                    if(map[i][j+1])rht[i][j]=rht[i][j+1]+1;
                }
            
            for(int i=1;i<=200;i++)
                for(int j=1;j<=200;j++){
                    if(!map[i][j])continue;
                    memset(st,0,sizeof(st));
                    for(int k=1;k<=dwn[i][j];k++)
                        st[k]=f[k][rht[i][j]];
                    for(int k=dwn[i][j];k>=1;k--)
                        st[k-1]+=st[k];
                    for(int k=0;k<=dwn[i][j];k++)
                        sum[i+k][j]+=st[k];
                    S+=st[0];            
                }
            
            for(int i=1;i<=200;i++)
                for(int j=1;j<=200;j++){
                    if(!dwn[i][j])continue;
                    if(!rht[i][j])continue;
                    LL tot=dp[dwn[i][j]][rht[i][j]];
                    LL calc=sum[i][j]-tot;
                    for(int k=1;k<=rht[i][j];k++){
                        calc+=sum[i][j+k];
                        M+=2*calc*f[k][dwn[i][j]];
                    }
                    M+=tot*tot;
                }    
            printf("Case #%d: %lld
    ",++cas,S*S-M);
        }
        return 0;
    }
  • 相关阅读:
    Java计算某个日期是一年中的第几天
    k8s-CentOs7.x 搭建集群(1)(kubelet 1.19.2)
    k8s-PV、PVC(7)
    k8s-Volumes(6)
    k8s-Scale、Rolling Update(5)
    k8s-Service介绍(4)
    k8s-部署AspNetCore应用(3)
    k8s-搭建Dashboard(2)
    AspNetcore搭配Serilog利用docker发布CentOs7
    CentOs7 搭建http服务器访问文件目录
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5943481.html
Copyright © 2011-2022 走看看