zoukankan      html  css  js  c++  java
  • 动态规划(DP计数):HDU 5117 Fluorescent

    Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt finds that there are N fluorescent lights which seem to be the stars from the firmament. What’s more, there are M switches that control these fluorescent lights. Each switch is connected to a group of lights. When Matt touches a switch, all the lights connected to it will change their states (turning the dark on, turning the bright off).

    Initially, all the fluorescent lights are dark. For each switch, Matt will touch it with probability 1 .

    As a curious gentleman, Matt wants to calculate E[X3], where X represents the number of bright lights at the end, E[X3] represents the expectation of cube of X.
     

    Input

    The first line contains only one integer T , which indicates the number of test cases.

    For each test case, the first line contains N, M (1 ≤ N, M ≤ 50), denoting the number of fluorescent lights (numbered from 1 to N ) and the number of switches (numbered from 1 to M ).

    M lines follow. The i-th line begins with an integer Ki (1 ≤ Ki ≤ N ). Ki distinct integers lij(1 ≤ lij ≤ N ) follow, denoting the fluorescent lights that the i-th switch controls.
     

    Output

    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the answer. To avoid rounding error, the answer you should output is:

    E[X3] × 2M mod (109 + 7)
     

    Sample Input

    2
    2 2
    1 1
    2 1 2
    3 1
    3 1 2 3

    Sample Output

    Case #1: 10
    Case #2: 27

    Hint

    For the first sample, there’re 4 possible situations: All the switches is off, no light is bright, X^3 = 0. Only the first switch is on, the first light is bright, X^3 = 1. Only the second switch is on, all the lights are bright, X^3 = 8. All the switches is on, the second lights are bright, X^3 = 1. Therefore, the answer is E[X^3] × 2^2 mod (10^9 + 7) = 10. For the second sample, there’re 2 possible situations: The switches is off, no light is bright, X^3 = 0. The switches is on, all the lights are bright, X^3 = 27. Therefore, the answer is E[X^3] × 2^1 mod (10^9 + 7) = 27.
      
      这道题就是对其计数。
      发现每个情况,假设有x1,x2,…,xk,k个灯亮,那么答案就是k³,答案可以这样计:有三排同样的,作相同的变换,每次各选定一个灯,看最后是否全亮,是则对答案有1的贡献。
      现在先枚举i,j,k三个灯,再DP即可。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int N=51,Mod=(int)1e9+7;
     6 typedef long long LL;
     7 LL dp[N][8],op[N][N];
     8 int T,cas,n,m;LL ans;
     9 int main(){
    10     scanf("%d",&T);
    11     while(T--){
    12         scanf("%d%d",&n,&m);
    13         memset(op,0,sizeof(op));
    14         for(int i=1,k,x;i<=m;i++){
    15             scanf("%d",&k);
    16             while(k--){
    17                 scanf("%d",&x);
    18                 op[i][x]=1;
    19             }
    20         }
    21         ans=0;
    22         for(int i=1;i<=n;i++)
    23             for(int j=1;j<=n;j++)
    24                 for(int k=1;k<=n;k++){
    25                     memset(dp,0,sizeof(dp));
    26                     dp[0][0]=1;
    27                     for(int t=1;t<=m;t++){
    28                         for(int p=0;p<=7;p++)
    29                             dp[t][p]=dp[t-1][p];
    30                         int go=0;
    31                         if(op[t][k])go+=1;
    32                         if(op[t][j])go+=2;
    33                         if(op[t][i])go+=4;
    34                         for(int p=0;p<=7;p++)
    35                             (dp[t][p^go]+=dp[t-1][p])%=Mod;    
    36                     }
    37                     (ans+=dp[m][7])%=Mod;
    38                 }
    39         printf("Case #%d: %lld
    ",++cas,ans);            
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    winRT Com组件开发流程总结
    win32 COM组件编写
    windows8 APP开发的远程调试
    VS2012中,C# 配置文件读取 + C#多个工程共享共有变量 + 整理using语句
    STL源码--序列式容器
    代码规范
    Visual Studio Code 断点调试配置方法(请按我的步骤 一定可以做到)
    CSS层级关系 学习笔记
    VUE 学习笔记
    CSS 学习笔记
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5943494.html
Copyright © 2011-2022 走看看