zoukankan      html  css  js  c++  java
  • 模拟(堆):USACO Jan11 瓶颈

    题目描述

    Farmer John is gathering the cows. His farm contains a network of N (1 <= N <= 100,000) fields conveniently numbered 1..N and connected by N-1 unidirectional paths that eventually lead to field 1. The fields and paths form a tree.

    Each field i > 1 has a single one-way, exiting path to field P_i, and currently contains C_i cows (1 <= C_i <= 1,000,000,000). In each time unit, no more than M_i (0 <= M_i <= 1,000,000,000) cows can travel from field i to field P_i (1 <= P_i <= N) (i.e., only M_i cows can traverse the path).

    Farmer John wants all the cows to congregate in field 1 (which has no limit on the number of cows it may have). Rules are as follows:

    • Time is considered in discrete units.

    • Any given cow might traverse multiple paths in the same time unit. However, no more than M_i total cows can leave field i (i.e., traverse its exit path) in the same time unit.

    • Cows never move *away* from field #1.

    In other words, every time step, each cow has the choice either to

    a) stay in its current field

    b) move through one or more fields toward field #1, as long as the bottleneck constraints for each path are not violated

    Farmer John wants to know how many cows can arrive in field 1 by certain times. In particular, he has a list of K (1 <= K <= 10,000) times T_i (1 <= T_i <= 1,000,000,000), and he wants to know, for each T_i in the list, the maximum number of cows that can arrive at field 1 by T_i if scheduled to optimize this quantity.

    Consider an example where the tree is a straight line, and the T_i list contains only T_1=5, and cows are distibuted as shown:

    Locn:      1---2---3---4      <-- Pasture ID numbers 
    C_i:       0   1   12  12     <-- Current number of cows 
    M_i:           5   8   3      <-- Limits on path traversal; field 1 has no limit since it has no exit 
    The solution is as follows; the goal is to move cows to field 1: 

    Tree: 1---2---3---4

    t=0        0   1   12  12     <-- Initial state 
    t=1        5   4   7   9      <-- field 1 has cows from field 2 and 3 t=2        10  7   2   6 
    t=3        15  7   0   3 
    t=4        20  5   0   0 
    t=5        25  0   0   0 
    Thus, the answer is 25: all 25 cows can arrive at field 1 by time t=5. 
    Farmer John有一张N个农场构成的网络(1 <= N <= 100,000) ,我们将农场标记为1N。 农场被N-1条单向道路连接,保证从任何一个农场可以到达1号农场。FJ想让奶牛到1号农场集中 (P.S. 至于要做什么我也不知道)。 对于每个农场i > 1都有一条单独的单向道路通往P_i,并且这个农场里有C_i只奶牛 (1 <= C_i <= 1,000,000,000)。

    在每个单位时间里,这条道路允许不超过M_i (0 <= M_i <= 1,000,000,000)只奶牛从农场i走到农场P_i (1 <= P_i <= N)。 Farmer John 想让所有的奶牛都集中在1号农场(农场容纳奶牛的数量是没有限制的)。 下面是奶牛集中到1号农场过程的规则:

    • 我们认为时间是离散的 * 任何奶牛都可以在一个单位时间里走过任意多条道路。但是,必须满足每条道路的上限M_i。

    • 奶牛从来不会离开1号农场。 换句话说,每一个单位时间,每只奶牛可以选择下面行动之一:

    a) 留在当前的农场

    b) 经过一条或者多条道路,向1号农场移动。

    同样,需要满足每条道路的上限M_i。

    FJ想知道有多少奶牛可以在某个特定的时刻到达1号农场。

    特别的,他有一张列着K (1 <= K <= 10,000) 个时间T_i (1 <= T_i <= 1,000,000,000)的单子,他想知道对于每个T_i,如果采用最优 的策略在这个时刻结束时最多能有多少奶牛到达1号农场。

    输入输出格式

    输入格式:
    • Line 1: Two space-separated integers: N and K

    • Lines 2..N: Line i (not i+1) describes field i with three

    space-separated integers: P_i, C_i, and M_i

    • Lines N+1..N+K: Line N+i contains a single integer: T_i
    输出格式:
    • Lines 1..K: Line i contains a single integer that is the maximum number of cows that can arrive at field 1 by time T_i.

    输入输出样例

    输入样例#1:
    4 1 
    1 1 5 
    2 12 7 
    3 12 3 
    5 
    
    输出样例#1:
    25 
    
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <queue>
     6 typedef long long LL;
     7 using namespace std;
     8 const int N=100010;
     9 struct Query{LL t,res;int id;}ask[N];
    10 bool cmp1(Query x,Query y){return x.t<y.t;}
    11 bool cmp2(Query x,Query y){return x.id<y.id;}
    12 struct Node{
    13   LL t;int x;Node(LL t_=0,int x_=0){t=t_;x=x_;}
    14   friend bool operator<(Node a,Node b){return a.t>b.t;}
    15 };
    16 priority_queue<Node>q;
    17 int fa[N],anc[N],lim[N];
    18 LL cow[N],pass[N];
    19 int Find(int x){
    20   if(anc[x]==x)return x;
    21   return anc[x]=Find(anc[x]);
    22 }
    23 int n,Q;
    24 int main(){
    25   freopen("bottleneck.in","r",stdin);
    26   freopen("bottleneck.out","w",stdout);
    27   scanf("%d%d",&n,&Q);
    28   for(int i=1;i<=n;i++)
    29     anc[i]=i;
    30   for(int i=2;i<=n;i++){
    31     scanf("%d",&fa[i]);
    32     scanf("%lld",&cow[i]);
    33     scanf("%lld",&lim[i]);
    34     pass[fa[i]]-=lim[i];
    35     pass[i]+=lim[i];
    36   }
    37   for(int i=1;i<=Q;i++){
    38     scanf("%lld",&ask[i].t);
    39     ask[i].id=i;
    40   }sort(ask+1,ask+Q+1,cmp1);
    41 
    42   for(int i=2;i<=n;i++)
    43     if(pass[i]>0){
    44       LL t=cow[i]/pass[i];
    45       q.push(Node(t,i));
    46     }
    47 
    48   int p=1,x,tp;
    49   while(!q.empty()&&p<=Q){
    50     while(p<=Q&&ask[p].t<=q.top().t)
    51       ask[p].res=cow[1]-pass[1]*ask[p].t,p++;
    52     if(anc[q.top().x]!=q.top().x){q.pop();continue;}
    53     x=q.top().x;tp=Find(fa[x]);cow[tp]+=cow[x];
    54     pass[tp]+=pass[x];anc[x]=tp;
    55     if(pass[tp]>0){
    56       LL t=cow[tp]/pass[tp];
    57       q.push(Node(t,tp));
    58     }
    59     q.pop();
    60   }sort(ask+1,ask+Q+1,cmp2);
    61   for(int i=1;i<=Q;i++)
    62     printf("%lld
    ",ask[i].res);
    63   return 0;
    64 }

     

  • 相关阅读:
    关于回调地狱
    node.js 关于跨域和传递给前台参数
    关于js的当前日期的格式化,和两个日期之间的相减的天数
    CSS 关于让页面的高度达到电脑屏幕的底部
    前端 为什么我选择用框架而不是Jquery
    关于webpack打包图片的路径问题
    关于webpack打包js和css
    微信小程序网络请求的setDate
    WinSocket聊天程序实例(多线程)
    Orcal的JDBC数据连接方式
  • 原文地址:https://www.cnblogs.com/TenderRun/p/6072870.html
Copyright © 2011-2022 走看看