zoukankan      html  css  js  c++  java
  • 最大子数组和(最大子段和)

    比如对于数组[1,-2,3,5,-1,2] 最大子数组和是sum[3,5,-1,2] = 9, 我们要求函数输出子数组和的最大值,并且返回子数组的左右边界(下面函数的left和right参数).

    本文我们规定当数组中所有数都小于0时,返回数组中最大的数(也可以规定返回0,只要让以下代码中maxsum初始化为0即可,此时我们要注意-1 0 0 0 -2这种情形,特别是如果要求输出子数组的起始位置时,如果是面试就要和面试官问清楚)

    以下代码我们在PAT 1007. Maximum Subsequence Sum测试通过,测试main函数如下

    int main()
    {
        int n;
        scanf("%d", &n);
        vector<int>vec(n);
        for(int i = 0; i < n; i++)
            scanf("%d", &vec[i]);
        int left, right;
        int maxsum = maxSum1(vec, left, right);//测试时替换函数名称
        if(maxsum >= 0)
            printf("%d %d %d", maxsum, vec[left], vec[right]);
        else printf("0 %d %d", vec[0], vec[n-1]);
    }

    参考:编程之美2.14 求数组的子数组之和的最大值

    算法1:最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)

    int maxSum1(vector<int>&vec, int &left, int &right)
    {
        int maxsum = INT_MIN, sum = 0;
        for(int i = 0; i < vec.size(); i++)
            for(int k = i; k < vec.size(); k++)
            {
                sum = 0;
                for(int j = i; j <= k; j++)
                    sum += vec[j];
                if(sum > maxsum)
                {
                    maxsum = sum;
                    left = i;
                    right = k;
                }
            }
        return maxsum;
    }

    算法2: 上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)

    int maxSum2(vector<int>&vec, int &left, int &right)
    {
        int maxsum = INT_MIN, sum = 0;
        for(int i = 0; i < vec.size(); i++)
        {
            sum = 0;
            for(int k = i; k < vec.size(); k++)
            {
                sum += vec[k];
                if(sum > maxsum)
                {
                    maxsum = sum;
                    left = i;
                    right = k;
                }
            }
        }
        return maxsum;
    }

    算法3: 分治法, 下面贴上编程之美的解释, 复杂度为O(nlogn)

    image

    image

    //求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
    int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
    {
        if(start == end)
        {
            left = start;
            right = left;
            return vec[start];
        }
        int middle = start + ((end - start)>>1);
        int lleft, lright, rleft, rright;
        int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
        int maxRight = maxSum3(vec, middle+1, end, rleft, rright);//右半部分最大和
        int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+1], mleft = middle, mright = middle+1;
        int tmp = vec[middle];
        for(int i = middle-1; i >= start; i--)
        {
            tmp += vec[i];
            if(tmp > maxLeftBoeder)
            {
                maxLeftBoeder = tmp;
                mleft = i;
            }
        }
        tmp = vec[middle+1];
        for(int i = middle+2; i <= end; i++)
        {
            tmp += vec[i];
            if(tmp > maxRightBorder)
            {
                maxRightBorder = tmp;
                mright = i;
            }
        }
        int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
        if(res == maxLeft)
        {
            left = lleft;
            right = lright;
        }
        else if(res == maxLeftBoeder+maxRightBorder)
        {
            left = mleft;
            right = mright;
        }
        else
        {
            left = rleft;
            right = rright;
        }
        return res;
    }

    算法4: 动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1],  vec[i+1]}

    如果不考虑记录最大子数组的位置,于是有以下代码:                本文地址

    int maxSum_(vector<int>&vec)
    {
        int maxsum = INT_MIN, sum = 0;
        for(int i = 0; i < vec.size(); i++)
        {
            sum = max(sum + vec[i], vec[i]);
            maxsum = max(maxsum, sum);
        }
        return maxsum;
    }

    对以上代码换个写法,并记录最大子数组的位置

    int maxSum4(vector<int>&vec, int &left, int&right)
    {
        int maxsum = INT_MIN, sum = 0;
        int begin = 0;
        for(int i = 0; i < vec.size(); i++)
        {
            if(sum >= 0)
            {
                sum += vec[i];
            }
            else
            {
                sum = vec[i];
                begin = i;
            }
    
            if(maxsum < sum)
            {
                maxsum = sum;
                left = begin;
                right = i;
            }
        }
        return maxsum;
    }

    如果数组是循环的,该如何呢

    这时分两种情形(图中红色方框表示求得的最大子数组,left、right分别是子数组的开始和结尾):

    (1)如下图最大的子数组没有跨过vec[n-1]到vec[0], 这就是每循环的情况

    image

    (2)如下图,最大的子数组跨过vec[n-1]到vec[0]

    image

    对于第二种情形,相当于从原数组中挖掉了一块(vec[right+1], …, vec[left-1]) ,那么我们只要使挖掉的和最小即可,求最小子数组和最大子数组类似,代码如下,以下代码在九度oj1572首尾相连数组的最大子数组和通过测试(测试需要,以下代码当数组全是负数时,输出0):

    int maxSumCycle(vector<int>&vec, int &left, int&right)
    {
        int maxsum = INT_MIN, curMaxSum = 0;
        int minsum = INT_MAX, curMinSum = 0;
        int sum = 0;
        int begin_max = 0, begin_min = 0;
        int minLeft, minRight;
        for(int i = 0; i < vec.size(); i++)
        {
            sum += vec[i];
            if(curMaxSum >= 0)
            {
                curMaxSum += vec[i];
            }
            else
            {
                curMaxSum = vec[i];
                begin_max = i;
            }
    
            if(maxsum < curMaxSum)
            {
                maxsum = curMaxSum;
                left = begin_max;
                right = i;
            }
            ///////////////求和最小的子数组
            if(curMinSum <= 0)
            {
                curMinSum += vec[i];
            }
            else
            {
                curMinSum = vec[i];
                begin_min = i;
            }
    
            if(minsum > curMinSum)
            {
                minsum = curMinSum;
                minLeft = begin_min;
                minRight = i;
            }
        }
        if(maxsum >= sum - minsum)
            return maxsum;
        else
        {
            left = minRight+1;
            right = minLeft-1;
            return sum - minsum;
        }
    }

    参考:面试题精解之二: 字符串、数组(1)

    【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3698246.html

  • 相关阅读:
    [CF1051F] The Shortest Statement
    [国家集训队] 墨墨的等式
    [CF558E] A Simple Task
    [洛谷P1349] 广义斐波那契数列
    [TJOI2009] 猜数字
    [洛谷P3403] 跳楼机
    学习力
    启动流程
    《鸟哥Linux》笔记——磁盘分区
    indexDB数据库
  • 原文地址:https://www.cnblogs.com/TenosDoIt/p/3698246.html
Copyright © 2011-2022 走看看